حساب التفاضل والتكامل الأمثلة

أوجد التكامل باستخدام تعويض u تكامل x^3sin(x^4) بالنسبة إلى x
خطوة 1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد مشتقة .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
استخدِم لكتابة في صورة .
خطوة 2.1.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.1.3
اجمع و.
خطوة 2.1.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.4.1
أخرِج العامل من .
خطوة 2.1.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.4.2.1
أخرِج العامل من .
خطوة 2.1.4.2.2
ألغِ العامل المشترك.
خطوة 2.1.4.2.3
أعِد كتابة العبارة.
خطوة 2.1.4.2.4
اقسِم على .
خطوة 2.2
اجمع و.
خطوة 2.3
اجمع و.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
أوجِد مشتقة .
خطوة 4.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.2
أعِد كتابة المسألة باستخدام و.
خطوة 5
اجمع و.
خطوة 6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
اضرب في .
خطوة 7.2
اضرب في .
خطوة 8
تكامل بالنسبة إلى هو .
خطوة 9
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
بسّط.
خطوة 9.2
اجمع و.
خطوة 10
عوّض مجددًا بقيمة كل متغير في التكامل بالتعويض.
انقر لعرض المزيد من الخطوات...
خطوة 10.1
استبدِل كافة حالات حدوث بـ .
خطوة 10.2
استبدِل كافة حالات حدوث بـ .
خطوة 11
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 11.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 11.1.2
اضرب في .
خطوة 11.2
أعِد ترتيب الحدود.