إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
افترض أن . أوجِد .
خطوة 1.1.1
أوجِد مشتقة .
خطوة 1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5
أضف و.
خطوة 1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2
خطوة 2.1
أعِد كتابة بالصيغة .
خطوة 2.1.1
استخدِم لكتابة في صورة .
خطوة 2.1.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.1.3
اجمع و.
خطوة 2.1.4
ألغِ العامل المشترك لـ .
خطوة 2.1.4.1
ألغِ العامل المشترك.
خطوة 2.1.4.2
أعِد كتابة العبارة.
خطوة 2.1.5
بسّط.
خطوة 2.2
اضرب في .
خطوة 2.3
انقُل إلى يسار .
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
خطوة 4.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
+ | - |
خطوة 4.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | - |
خطوة 4.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | - | ||||||
+ | + |
خطوة 4.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | - | ||||||
- | - |
خطوة 4.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | - | ||||||
- | - | ||||||
- |
خطوة 4.6
الإجابة النهائية هي ناتج القسمة زائد الباقي على المقسوم عليه.
خطوة 5
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 6
طبّق قاعدة الثابت.
خطوة 7
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8
تكامل بالنسبة إلى هو .
خطوة 9
بسّط.
خطوة 10
استبدِل كافة حالات حدوث بـ .
خطوة 11
خطوة 11.1
طبّق خاصية التوزيع.
خطوة 11.2
بسّط.
خطوة 11.2.1
اجمع و.
خطوة 11.2.2
اضرب في .
خطوة 11.2.3
اجمع و.
خطوة 11.3
اجمع البسوط على القاسم المشترك.
خطوة 12
أعِد ترتيب الحدود.