حساب التفاضل والتكامل الأمثلة

أوجد التكامل باستخدام تعويض u التكامل من 0 إلى 1 لـ x^2(1+2x^3)^5 بالنسبة إلى x
خطوة 1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد مشتقة .
خطوة 1.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.4
أضف و.
خطوة 1.2
عوّض بالنهاية الدنيا عن في .
خطوة 1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.3.1.2
اضرب في .
خطوة 1.3.2
أضف و.
خطوة 1.4
عوّض بالنهاية العليا عن في .
خطوة 1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.5.1.2
اضرب في .
خطوة 1.5.2
أضف و.
خطوة 1.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 1.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 2
اجمع و.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
احسِب قيمة في وفي .
خطوة 5.2
ارفع إلى القوة .
خطوة 5.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
اجمع و.
خطوة 5.3.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.1
أخرِج العامل من .
خطوة 5.3.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.2.1
أخرِج العامل من .
خطوة 5.3.2.2.2
ألغِ العامل المشترك.
خطوة 5.3.2.2.3
أعِد كتابة العبارة.
خطوة 5.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 5.4.2
اضرب في .
خطوة 5.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.5.2
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.2.1
اضرب في .
خطوة 5.5.2.2
اضرب في .
خطوة 5.5.3
اجمع البسوط على القاسم المشترك.
خطوة 5.5.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.4.1
اضرب في .
خطوة 5.5.4.2
اطرح من .
خطوة 5.5.5
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.5.1
أخرِج العامل من .
خطوة 5.5.5.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.5.2.1
أخرِج العامل من .
خطوة 5.5.5.2.2
ألغِ العامل المشترك.
خطوة 5.5.5.2.3
أعِد كتابة العبارة.
خطوة 5.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.6.1
اضرب في .
خطوة 5.6.2
اضرب في .
خطوة 5.6.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.6.3.1
أخرِج العامل من .
خطوة 5.6.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.6.3.2.1
أخرِج العامل من .
خطوة 5.6.3.2.2
ألغِ العامل المشترك.
خطوة 5.6.3.2.3
أعِد كتابة العبارة.
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
صيغة العدد الذي به كسر: