حساب التفاضل والتكامل الأمثلة

أوجد التكامل باستخدام تعويض u التكامل من 0 إلى pi/4 لـ (sin(t))/(cos(t)^2) بالنسبة إلى t
خطوة 1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد مشتقة .
خطوة 1.1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.2
عوّض بالنهاية الدنيا عن في .
خطوة 1.3
القيمة الدقيقة لـ هي .
خطوة 1.4
عوّض بالنهاية العليا عن في .
خطوة 1.5
القيمة الدقيقة لـ هي .
خطوة 1.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 1.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 2
انقُل السالب أمام الكسر.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 4.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.2
اضرب في .
خطوة 5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 6
احسِب قيمة في وفي .
خطوة 7
غيّر علامة الأُس بإعادة كتابة الأساس في صورة مقلوبه.
خطوة 8
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 9
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: