حساب التفاضل والتكامل الأمثلة

أوجد التكامل باستخدام تعويض u التكامل من -1 إلى 1 لـ x(x^2+1)^3 بالنسبة إلى x
خطوة 1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد مشتقة .
خطوة 1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5
أضف و.
خطوة 1.2
عوّض بالنهاية الدنيا عن في .
خطوة 1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
ارفع إلى القوة .
خطوة 1.3.2
أضف و.
خطوة 1.4
عوّض بالنهاية العليا عن في .
خطوة 1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.5.2
أضف و.
خطوة 1.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 1.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 2
اجمع و.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
احسِب قيمة في وفي .
خطوة 5.2
ارفع إلى القوة .
خطوة 5.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
اجمع و.
خطوة 5.3.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.1
أخرِج العامل من .
خطوة 5.3.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.2.1
أخرِج العامل من .
خطوة 5.3.2.2.2
ألغِ العامل المشترك.
خطوة 5.3.2.2.3
أعِد كتابة العبارة.
خطوة 5.3.2.2.4
اقسِم على .
خطوة 5.4
ارفع إلى القوة .
خطوة 5.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1
اضرب في .
خطوة 5.5.2
اجمع و.
خطوة 5.5.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.3.1
أخرِج العامل من .
خطوة 5.5.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.3.2.1
أخرِج العامل من .
خطوة 5.5.3.2.2
ألغِ العامل المشترك.
خطوة 5.5.3.2.3
أعِد كتابة العبارة.
خطوة 5.5.3.2.4
اقسِم على .
خطوة 5.6
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 5.6.1
اطرح من .
خطوة 5.6.2
اضرب في .