حساب التفاضل والتكامل الأمثلة

أوجد التكامل باستخدام تعويض u التكامل من 1 إلى 4 لـ (e^( الجذر التربيعي لـ x))/( الجذر التربيعي لـ x) بالنسبة إلى x
خطوة 1
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
استخدِم لكتابة في صورة .
خطوة 1.2
استخدِم لكتابة في صورة .
خطوة 1.3
انقُل خارج القاسم برفعها إلى القوة .
خطوة 1.4
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.4.2
اجمع و.
خطوة 1.4.3
انقُل السالب أمام الكسر.
خطوة 2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أوجِد مشتقة .
خطوة 2.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.1.4
اجمع و.
خطوة 2.1.5
اجمع البسوط على القاسم المشترك.
خطوة 2.1.6
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.6.1
اضرب في .
خطوة 2.1.6.2
اطرح من .
خطوة 2.1.7
انقُل السالب أمام الكسر.
خطوة 2.1.8
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.8.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 2.1.8.2
اضرب في .
خطوة 2.2
عوّض بالنهاية الدنيا عن في .
خطوة 2.3
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 2.4
عوّض بالنهاية العليا عن في .
خطوة 2.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
أعِد كتابة بالصيغة .
خطوة 2.5.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.5.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.3.1
ألغِ العامل المشترك.
خطوة 2.5.3.2
أعِد كتابة العبارة.
خطوة 2.5.4
احسِب قيمة الأُس.
خطوة 2.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 2.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
تكامل بالنسبة إلى هو .
خطوة 5
عوّض وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
احسِب قيمة في وفي .
خطوة 5.2
بسّط.
خطوة 6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
طبّق خاصية التوزيع.
خطوة 6.2
اضرب في .
خطوة 7
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
خطوة 8