حساب التفاضل والتكامل الأمثلة

أوجد النقاط الحرجة Let f(x)=2x^3-9x^2+12x
Let
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
اضرب في .
خطوة 1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.4.3
اضرب في .
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
أخرِج العامل من .
خطوة 2.2.1.2
أخرِج العامل من .
خطوة 2.2.1.3
أخرِج العامل من .
خطوة 2.2.1.4
أخرِج العامل من .
خطوة 2.2.1.5
أخرِج العامل من .
خطوة 2.2.2
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 2.2.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 2.2.2.2
احذِف الأقواس غير الضرورية.
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أضف إلى كلا المتعادلين.
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
أضف إلى كلا المتعادلين.
خطوة 2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.1.1
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.1.1.1
ارفع إلى القوة .
خطوة 4.1.2.1.1.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.1.2.1.1.2
أضف و.
خطوة 4.1.2.1.2
ارفع إلى القوة .
خطوة 4.1.2.1.3
ارفع إلى القوة .
خطوة 4.1.2.1.4
اضرب في .
خطوة 4.1.2.1.5
اضرب في .
خطوة 4.1.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.2.1
اطرح من .
خطوة 4.1.2.2.2
أضف و.
خطوة 4.2
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.2.2.1.2
اضرب في .
خطوة 4.2.2.1.3
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.2.2.1.4
اضرب في .
خطوة 4.2.2.1.5
اضرب في .
خطوة 4.2.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.2.1
اطرح من .
خطوة 4.2.2.2.2
أضف و.
خطوة 4.3
اسرِد جميع النقاط.
خطوة 5