حساب التفاضل والتكامل الأمثلة

خطوة 1
اكتب في صورة دالة.
خطوة 2
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 3
عيّن التكامل لإيجاد الحل.
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد كتابة بالصيغة .
خطوة 4.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
طبّق خاصية التوزيع.
خطوة 4.2.2
طبّق خاصية التوزيع.
خطوة 4.2.3
طبّق خاصية التوزيع.
خطوة 4.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1.1
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.3.1.1.2
أضف و.
خطوة 4.3.1.2
اضرب في .
خطوة 4.3.1.3
اضرب في .
خطوة 4.3.1.4
اضرب في .
خطوة 4.3.2
أضف و.
خطوة 5
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 6
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
أوجِد مشتقة .
خطوة 6.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 6.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 6.1.4
اضرب في .
خطوة 6.2
أعِد كتابة المسألة باستخدام و.
خطوة 7
اجمع و.
خطوة 8
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 9
تكامل بالنسبة إلى هو .
خطوة 10
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 11
تكامل بالنسبة إلى هو .
خطوة 12
طبّق قاعدة الثابت.
خطوة 13
بسّط.
خطوة 14
استبدِل كافة حالات حدوث بـ .
خطوة 15
الإجابة هي المشتق العكسي للدالة .