إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.1.2.1
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.2
انقُل النهاية داخل اللوغاريتم.
خطوة 1.1.2.3
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.1.2.3.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.4
بسّط الإجابة.
خطوة 1.1.2.4.1
اضرب في .
خطوة 1.1.2.4.2
اللوغاريتم الطبيعي لـ يساوي .
خطوة 1.1.3
احسِب قيمة حد القاسم.
خطوة 1.1.3.1
احسِب قيمة النهاية.
خطوة 1.1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.1.2
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.1.3.1.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.3
بسّط الإجابة.
خطوة 1.1.3.3.1
بسّط كل حد.
خطوة 1.1.3.3.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.1.3.3.1.2
اضرب في .
خطوة 1.1.3.3.2
اطرح من .
خطوة 1.1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.3.3
مشتق بالنسبة إلى يساوي .
خطوة 1.3.4
اجمع و.
خطوة 1.3.5
ألغِ العامل المشترك لـ .
خطوة 1.3.5.1
ألغِ العامل المشترك.
خطوة 1.3.5.2
أعِد كتابة العبارة.
خطوة 1.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.7
اضرب في .
خطوة 1.3.8
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.10
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.11
أضف و.
خطوة 2
خطوة 2.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.2
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 2.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.5
انقُل النهاية داخل اللوغاريتم.
خطوة 3
خطوة 3.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4
خطوة 4.1
اقسِم على .
خطوة 4.2
اللوغاريتم الطبيعي لـ يساوي .
خطوة 4.3
أضف و.
خطوة 4.4
اضرب في .
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: