حساب التفاضل والتكامل الأمثلة

التكامل عن طريق الأجزاء تكامل 4xe^(2x) بالنسبة إلى x
خطوة 1
أوجِد التكامل بالتجزئة باستخدام القاعدة ، حيث و.
خطوة 2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اجمع و.
خطوة 2.2
اجمع و.
خطوة 2.3
اجمع و.
خطوة 2.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
أخرِج العامل من .
خطوة 2.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.1
أخرِج العامل من .
خطوة 2.4.2.2
ألغِ العامل المشترك.
خطوة 2.4.2.3
أعِد كتابة العبارة.
خطوة 2.4.2.4
اقسِم على .
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اجمع و.
خطوة 4.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
أخرِج العامل من .
خطوة 4.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
أخرِج العامل من .
خطوة 4.2.2.2
ألغِ العامل المشترك.
خطوة 4.2.2.3
أعِد كتابة العبارة.
خطوة 4.2.2.4
اقسِم على .
خطوة 4.3
اضرب في .
خطوة 5
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
أوجِد مشتقة .
خطوة 5.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.1.4
اضرب في .
خطوة 5.2
أعِد كتابة المسألة باستخدام و.
خطوة 6
اجمع و.
خطوة 7
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
اجمع و.
خطوة 8.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
أخرِج العامل من .
خطوة 8.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.2.1
أخرِج العامل من .
خطوة 8.2.2.2
ألغِ العامل المشترك.
خطوة 8.2.2.3
أعِد كتابة العبارة.
خطوة 8.2.2.4
اقسِم على .
خطوة 9
تكامل بالنسبة إلى هو .
خطوة 10
أعِد كتابة بالصيغة .
خطوة 11
استبدِل كافة حالات حدوث بـ .