حساب التفاضل والتكامل الأمثلة

قييم النهاية النهاية عند اقتراب x من 1 لـ (x^(1/2*6)-x^(1/2))/(x^(1/2*3)-x^(1/2))
خطوة 1
بسّط المتغير المستقل للنهاية.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
حوّل الأُسس الكسرية إلى جذور.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أعِد كتابة بالصيغة .
خطوة 1.1.2
أعِد كتابة بالصيغة .
خطوة 1.2
جمّع العوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
اجمع و.
خطوة 1.2.2
اجمع و.
خطوة 1.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أخرِج العامل من .
خطوة 1.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1
أخرِج العامل من .
خطوة 1.3.2.2
ألغِ العامل المشترك.
خطوة 1.3.2.3
أعِد كتابة العبارة.
خطوة 1.3.2.4
اقسِم على .
خطوة 2
طبّق قاعدة لوبيتال.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 2.1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.2
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 2.1.2.3
انقُل النهاية أسفل علامة الجذر.
خطوة 2.1.2.4
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.4.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.4.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.5
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 2.1.2.5.1.2
أي جذر لـ هو .
خطوة 2.1.2.5.1.3
اضرب في .
خطوة 2.1.2.5.2
اطرح من .
خطوة 2.1.3
احسِب قيمة حد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.3.2
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 2.1.3.3
انقُل النهاية أسفل علامة الجذر.
خطوة 2.1.3.4
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.4.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.3.4.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.3.5
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.5.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.5.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 2.1.3.5.1.2
أي جذر لـ هو .
خطوة 2.1.3.5.1.3
اضرب في .
خطوة 2.1.3.5.2
اطرح من .
خطوة 2.1.3.5.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.3.6
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 2.3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 2.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.1
استخدِم لكتابة في صورة .
خطوة 2.3.4.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.4.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.4.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.3.4.5
اجمع و.
خطوة 2.3.4.6
اجمع البسوط على القاسم المشترك.
خطوة 2.3.4.7
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.7.1
اضرب في .
خطوة 2.3.4.7.2
اطرح من .
خطوة 2.3.4.8
انقُل السالب أمام الكسر.
خطوة 2.3.4.9
اجمع و.
خطوة 2.3.4.10
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 2.3.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.6
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.6.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.6.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.3.6.3
اجمع و.
خطوة 2.3.6.4
اجمع البسوط على القاسم المشترك.
خطوة 2.3.6.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.6.5.1
اضرب في .
خطوة 2.3.6.5.2
اطرح من .
خطوة 2.3.7
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.1
استخدِم لكتابة في صورة .
خطوة 2.3.7.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.7.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.7.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.3.7.5
اجمع و.
خطوة 2.3.7.6
اجمع البسوط على القاسم المشترك.
خطوة 2.3.7.7
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.7.1
اضرب في .
خطوة 2.3.7.7.2
اطرح من .
خطوة 2.3.7.8
انقُل السالب أمام الكسر.
خطوة 2.3.7.9
اجمع و.
خطوة 2.3.7.10
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 2.3.8
اجمع و.
خطوة 2.4
حوّل الأُسس الكسرية إلى جذور.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
أعِد كتابة بالصيغة .
خطوة 2.4.2
أعِد كتابة بالصيغة .
خطوة 2.4.3
أعِد كتابة بالصيغة .
خطوة 2.5
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.5.2
اجمع و.
خطوة 2.5.3
اجمع البسوط على القاسم المشترك.
خطوة 2.5.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.5.5
اضرب في .
خطوة 2.5.6
اجمع البسوط على القاسم المشترك.
خطوة 3
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 3.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.3
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 3.4
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.5
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.6
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 3.7
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 3.8
انقُل النهاية أسفل علامة الجذر.
خطوة 3.9
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 3.10
انقُل النهاية أسفل علامة الجذر.
خطوة 3.11
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.12
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 3.13
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.14
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.15
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 3.16
انقُل النهاية أسفل علامة الجذر.
خطوة 3.17
انقُل النهاية أسفل علامة الجذر.
خطوة 3.18
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 3.19
انقُل النهاية أسفل علامة الجذر.
خطوة 4
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.4
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.5
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.6
احسِب قيمة حد بالتعويض عن بـ .
خطوة 5
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
ألغِ العامل المشترك.
خطوة 5.1.2
أعِد كتابة العبارة.
خطوة 5.2
اضرب بسط الكسر في مقلوب القاسم.
خطوة 5.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
ألغِ العامل المشترك.
خطوة 5.3.2
أعِد كتابة العبارة.
خطوة 5.4
اضرب في .
خطوة 5.5
اضرب في .
خطوة 5.6
ارفع إلى القوة .
خطوة 5.7
ارفع إلى القوة .
خطوة 5.8
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.9
أضف و.
خطوة 5.10
اضرب في .
خطوة 5.11
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 5.11.1
أي جذر لـ هو .
خطوة 5.11.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 5.11.3
اضرب في .
خطوة 5.11.4
اطرح من .
خطوة 5.12
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.12.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 5.12.2
اضرب في .
خطوة 5.12.3
أي جذر لـ هو .
خطوة 5.12.4
اضرب في .
خطوة 5.13
اطرح من .
خطوة 5.14
اجمع و.
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: