حساب التفاضل والتكامل الأمثلة

خطوة 1
Find the values where the second derivative is equal to .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.3
اضرب في .
خطوة 1.1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3.3
اضرب في .
خطوة 1.1.2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.2.3
اضرب في .
خطوة 1.1.2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3.3
اضرب في .
خطوة 1.1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 1.2.2
اطرح من كلا المتعادلين.
خطوة 1.2.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
اقسِم كل حد في على .
خطوة 1.2.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.3.2.1.2
اقسِم على .
خطوة 1.2.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.3.1
اقسِم على .
خطوة 1.2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 1.2.5
أي جذر لـ هو .
خطوة 1.2.6
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.6.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 1.2.6.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 1.2.6.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 3
أنشئ فترات حول القيم التي يكون عندها المشتق الثاني مساويًا لصفر أو غير معرّف.
خطوة 4
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
ارفع إلى القوة .
خطوة 4.2.1.2
اضرب في .
خطوة 4.2.2
أضف و.
خطوة 4.2.3
الإجابة النهائية هي .
خطوة 4.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 5
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.2
أضف و.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 6
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
ارفع إلى القوة .
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.2
أضف و.
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 7
يكون الرسم البياني مقعرًا لأسفل إذا كان المشتق الثاني سالبًا ومقعرًا لأعلى إذا كان المشتق الثاني موجبًا.
مقعر لأسفل خلال بما أن سالبة
مقعر لأعلى خلال بما أن موجبة
مقعر لأسفل خلال بما أن سالبة
خطوة 8