إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أعِد كتابة المعادلة التفاضلية.
خطوة 2
افترض أن جميع الحلول من صيغة .
خطوة 3
خطوة 3.1
أوجِد المشتق الأول.
خطوة 3.2
أوجِد المشتق الثاني.
خطوة 3.3
عوّض في المعادلة التفاضلية.
خطوة 3.4
احذِف الأقواس.
خطوة 3.5
أخرِج عامل .
خطوة 3.5.1
أخرِج العامل من .
خطوة 3.5.2
أخرِج العامل من .
خطوة 3.5.3
أخرِج العامل من .
خطوة 3.5.4
أخرِج العامل من .
خطوة 3.5.5
أخرِج العامل من .
خطوة 3.6
بما أن الأسية لا يمكن أن تساوي صفرًا، إذن اقسم كلا الطرفين على .
خطوة 4
خطوة 4.1
اطرح من كلا المتعادلين.
خطوة 4.2
اطرح من .
خطوة 4.3
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 4.3.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 4.3.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 4.4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.5.2
أضف إلى كلا المتعادلين.
خطوة 4.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.6.2
اطرح من كلا المتعادلين.
خطوة 4.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 5
باستخدام القيمتين اللتين تم إيجادهما لـ ، يمكن الوصول إلى حلين.
خطوة 6
وفقًا لمبدأ التراكب، الحل العام هو مجموعة خطية من الحلين لمعادلة تفاضلية خطية متجانسة من الدرجة الثانية.
خطوة 7
اضرب في .