حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=(-2x)/(3y^2) , y(2)=1
,
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
أخرِج العامل من .
خطوة 1.2.1.2
ألغِ العامل المشترك.
خطوة 1.2.1.3
أعِد كتابة العبارة.
خطوة 1.2.2
انقُل السالب أمام الكسر.
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.3
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.4
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.1
أعِد كتابة بالصيغة .
خطوة 2.3.4.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.2.1
اضرب في .
خطوة 2.3.4.2.2
اضرب في .
خطوة 2.3.4.2.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.2.3.1
أخرِج العامل من .
خطوة 2.3.4.2.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.2.3.2.1
أخرِج العامل من .
خطوة 2.3.4.2.3.2.2
ألغِ العامل المشترك.
خطوة 2.3.4.2.3.2.3
أعِد كتابة العبارة.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.1
اجمع و.
خطوة 3.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1
اجمع و.
خطوة 3.2.2.1.2
طبّق خاصية التوزيع.
خطوة 3.2.2.1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.3.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.2.1.3.2
ألغِ العامل المشترك.
خطوة 3.2.2.1.3.3
أعِد كتابة العبارة.
خطوة 3.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 4
بسّط ثابت التكامل.
خطوة 5
استخدِم الشرط الابتدائي لإيجاد قيمة بالتعويض بـ عن وبـ عن في .
خطوة 6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أعِد كتابة المعادلة في صورة .
خطوة 6.2
لحذف الجذر في المتعادل الأيسر، كعِّب كلا المتعادلين.
خطوة 6.3
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
استخدِم لكتابة في صورة .
خطوة 6.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 6.3.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 6.3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 6.3.2.1.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.2.1
ارفع إلى القوة .
خطوة 6.3.2.1.2.2
اضرب في .
خطوة 6.3.2.1.3
بسّط.
خطوة 6.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 6.4
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.4.1
أضف إلى كلا المتعادلين.
خطوة 6.4.2
أضف و.
خطوة 7
عوّض بـ عن في وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
عوّض بقيمة التي تساوي .