إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
استخدِم لكتابة في صورة .
خطوة 2
أوجِد مشتقة المتعادلين.
خطوة 3
مشتق بالنسبة إلى يساوي .
خطوة 4
خطوة 4.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 4.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.1.2
مشتق بالنسبة إلى يساوي .
خطوة 4.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.2
اضرب الأُسس في .
خطوة 4.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.2
ألغِ العامل المشترك لـ .
خطوة 4.2.2.1
ألغِ العامل المشترك.
خطوة 4.2.2.2
أعِد كتابة العبارة.
خطوة 4.3
بسّط.
خطوة 4.4
اطرح من .
خطوة 4.5
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 4.5.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.5.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.6
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.7
اجمع و.
خطوة 4.8
اجمع البسوط على القاسم المشترك.
خطوة 4.9
بسّط بَسْط الكسر.
خطوة 4.9.1
اضرب في .
خطوة 4.9.2
اطرح من .
خطوة 4.10
اجمع الكسور.
خطوة 4.10.1
انقُل السالب أمام الكسر.
خطوة 4.10.2
اجمع و.
خطوة 4.10.3
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 4.10.4
اضرب في .
خطوة 4.11
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.12
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.13
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.14
بسّط العبارة.
خطوة 4.14.1
أضف و.
خطوة 4.14.2
اضرب في .
خطوة 5
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 6
استبدِل بـ .