إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
استخدِم لكتابة في صورة .
خطوة 2
أوجِد مشتقة المتعادلين.
خطوة 3
مشتق بالنسبة إلى يساوي .
خطوة 4
خطوة 4.1
حوّل من إلى .
خطوة 4.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 4.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 4.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.4
انقُل إلى يسار .
خطوة 4.5
مشتق بالنسبة إلى يساوي .
خطوة 4.6
ارفع إلى القوة .
خطوة 4.7
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.8
أضف و.
خطوة 4.9
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 4.9.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.9.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.9.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.10
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.11
اجمع و.
خطوة 4.12
اجمع البسوط على القاسم المشترك.
خطوة 4.13
بسّط بَسْط الكسر.
خطوة 4.13.1
اضرب في .
خطوة 4.13.2
اطرح من .
خطوة 4.14
اجمع الكسور.
خطوة 4.14.1
انقُل السالب أمام الكسر.
خطوة 4.14.2
اجمع و.
خطوة 4.14.3
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 4.14.4
اجمع و.
خطوة 4.15
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.16
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.17
أضف و.
خطوة 4.18
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.19
بسّط الحدود.
خطوة 4.19.1
اجمع و.
خطوة 4.19.2
أخرِج العامل من .
خطوة 4.20
ألغِ العوامل المشتركة.
خطوة 4.20.1
أخرِج العامل من .
خطوة 4.20.2
ألغِ العامل المشترك.
خطوة 4.20.3
أعِد كتابة العبارة.
خطوة 4.21
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.22
اجمع الكسور.
خطوة 4.22.1
اجمع و.
خطوة 4.22.2
اضرب في .
خطوة 4.22.3
اجمع و.
خطوة 4.23
بسّط.
خطوة 4.23.1
أعِد ترتيب الحدود.
خطوة 4.23.2
أعِد ترتيب العوامل في .
خطوة 5
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 6
استبدِل بـ .