إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أعِد كتابة بالصيغة .
خطوة 1.2
وسّع بنقل خارج اللوغاريتم.
خطوة 2
خطوة 2.1
انقُل النهاية إلى الأُس.
خطوة 2.2
اجمع و.
خطوة 3
خطوة 3.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 3.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 3.1.2
عند اقتراب اللوغاريتم من ما لا نهاية، تتجه القيمة إلى .
خطوة 3.1.3
النهاية عند ما لا نهاية متعدد حدود معامله الرئيسي موجب تساوي ما لا نهاية.
خطوة 3.1.4
ناتج قسمة ما لا نهاية على ما لا نهاية يساوي قيمة غير معرّفة.
غير معرّف
خطوة 3.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 3.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 3.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 3.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 3.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.5
أضف و.
خطوة 3.3.6
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.7
اجمع و.
خطوة 3.3.8
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.3.9
اجمع و.
خطوة 3.3.10
أعِد ترتيب الحدود.
خطوة 3.3.11
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 3.5
اضرب في .
خطوة 4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 5
خطوة 5.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 5.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 5.1.2
بما أن الأُس يقترب من ، إذن الكمية تقترب من .
خطوة 5.1.3
احسِب قيمة حد القاسم.
خطوة 5.1.3.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 5.1.3.2
بما أن الدالة تقترب من ، إذن حاصل ضرب الثابت الموجب في الدالة يقترب أيضًا من .
خطوة 5.1.3.2.1
انظر النهاية ذات المضاعف الثابت المحذوف.
خطوة 5.1.3.2.2
بما أن الأُس يقترب من ، إذن الكمية تقترب من .
خطوة 5.1.3.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 5.1.3.4
ما لا نهاية زائد أو ناقص أي عدد يساوي ما لا نهاية.
خطوة 5.1.3.5
ناتج قسمة ما لا نهاية على ما لا نهاية يساوي قيمة غير معرّفة.
غير معرّف
خطوة 5.1.4
ناتج قسمة ما لا نهاية على ما لا نهاية يساوي قيمة غير معرّفة.
غير معرّف
خطوة 5.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 5.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 5.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 5.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 5.3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.3.4
احسِب قيمة .
خطوة 5.3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.3.4.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 5.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.3.6
أضف و.
خطوة 5.4
ألغِ العامل المشترك لـ .
خطوة 5.4.1
ألغِ العامل المشترك.
خطوة 5.4.2
أعِد كتابة العبارة.
خطوة 6
خطوة 6.1
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 6.2
بسّط الإجابة.
خطوة 6.2.1
ألغِ العامل المشترك لـ .
خطوة 6.2.1.1
ألغِ العامل المشترك.
خطوة 6.2.1.2
أعِد كتابة العبارة.
خطوة 6.2.2
بسّط.
خطوة 7
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: