إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
خطوة 1.2.1
استخدِم لكتابة في صورة .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.2.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.6
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.2.7
اجمع و.
خطوة 1.2.8
اجمع البسوط على القاسم المشترك.
خطوة 1.2.9
بسّط بَسْط الكسر.
خطوة 1.2.9.1
اضرب في .
خطوة 1.2.9.2
اطرح من .
خطوة 1.2.10
انقُل السالب أمام الكسر.
خطوة 1.2.11
أضف و.
خطوة 1.2.12
اجمع و.
خطوة 1.2.13
اضرب في .
خطوة 1.2.14
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.3
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.2
أضف و.
خطوة 2
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة المضاعف الثابت.
خطوة 2.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2
طبّق القواعد الأساسية للأُسس.
خطوة 2.1.2.1
أعِد كتابة بالصيغة .
خطوة 2.1.2.2
اضرب الأُسس في .
خطوة 2.1.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.1.2.2.2
اجمع و.
خطوة 2.1.2.2.3
انقُل السالب أمام الكسر.
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.4
اجمع و.
خطوة 2.5
اجمع البسوط على القاسم المشترك.
خطوة 2.6
بسّط بَسْط الكسر.
خطوة 2.6.1
اضرب في .
خطوة 2.6.2
اطرح من .
خطوة 2.7
اجمع الكسور.
خطوة 2.7.1
انقُل السالب أمام الكسر.
خطوة 2.7.2
اجمع و.
خطوة 2.7.3
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 2.7.4
اضرب في .
خطوة 2.7.5
اضرب في .
خطوة 2.8
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.10
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.11
بسّط العبارة.
خطوة 2.11.1
أضف و.
خطوة 2.11.2
اضرب في .
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
خطوة 4.1
أوجِد المشتق الأول.
خطوة 4.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.2
احسِب قيمة .
خطوة 4.1.2.1
استخدِم لكتابة في صورة .
خطوة 4.1.2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 4.1.2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.1.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.1.2.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.2.6
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.1.2.7
اجمع و.
خطوة 4.1.2.8
اجمع البسوط على القاسم المشترك.
خطوة 4.1.2.9
بسّط بَسْط الكسر.
خطوة 4.1.2.9.1
اضرب في .
خطوة 4.1.2.9.2
اطرح من .
خطوة 4.1.2.10
انقُل السالب أمام الكسر.
خطوة 4.1.2.11
أضف و.
خطوة 4.1.2.12
اجمع و.
خطوة 4.1.2.13
اضرب في .
خطوة 4.1.2.14
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 4.1.3
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 4.1.3.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.3.2
أضف و.
خطوة 4.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 5
خطوة 5.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 5.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 5.3
بما أن ، إذن لا توجد حلول.
لا يوجد حل
لا يوجد حل
خطوة 6
خطوة 6.1
حوّل العبارات ذات الأُسس الكسرية إلى جذور.
خطوة 6.1.1
طبّق القاعدة لإعادة كتابة الأُس في صورة جذر.
خطوة 6.1.2
ناتج رفع أي عدد إلى يساوي الأساس نفسه.
خطوة 6.2
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 6.3
أوجِد قيمة .
خطوة 6.3.1
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 6.3.2
بسّط كل متعادل.
خطوة 6.3.2.1
استخدِم لكتابة في صورة .
خطوة 6.3.2.2
بسّط الطرف الأيسر.
خطوة 6.3.2.2.1
بسّط .
خطوة 6.3.2.2.1.1
طبّق قاعدة الضرب على .
خطوة 6.3.2.2.1.2
ارفع إلى القوة .
خطوة 6.3.2.2.1.3
اضرب الأُسس في .
خطوة 6.3.2.2.1.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 6.3.2.2.1.3.2
ألغِ العامل المشترك لـ .
خطوة 6.3.2.2.1.3.2.1
ألغِ العامل المشترك.
خطوة 6.3.2.2.1.3.2.2
أعِد كتابة العبارة.
خطوة 6.3.2.2.1.4
بسّط.
خطوة 6.3.2.2.1.5
طبّق خاصية التوزيع.
خطوة 6.3.2.2.1.6
اضرب في .
خطوة 6.3.2.3
بسّط الطرف الأيمن.
خطوة 6.3.2.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.3.3
أوجِد قيمة .
خطوة 6.3.3.1
أضف إلى كلا المتعادلين.
خطوة 6.3.3.2
اقسِم كل حد في على وبسّط.
خطوة 6.3.3.2.1
اقسِم كل حد في على .
خطوة 6.3.3.2.2
بسّط الطرف الأيسر.
خطوة 6.3.3.2.2.1
ألغِ العامل المشترك لـ .
خطوة 6.3.3.2.2.1.1
ألغِ العامل المشترك.
خطوة 6.3.3.2.2.1.2
اقسِم على .
خطوة 6.3.3.2.3
بسّط الطرف الأيمن.
خطوة 6.3.3.2.3.1
اقسِم على .
خطوة 6.4
عيّن قيمة المجذور في بحيث تصبح أصغر من لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 6.5
أضِف إلى كلا طرفي المتباينة.
خطوة 6.6
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 7
النقاط الحرجة اللازم حساب قيمتها.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
خطوة 9.1
بسّط العبارة.
خطوة 9.1.1
اطرح من .
خطوة 9.1.2
أعِد كتابة بالصيغة .
خطوة 9.1.3
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 9.2
ألغِ العامل المشترك لـ .
خطوة 9.2.1
ألغِ العامل المشترك.
خطوة 9.2.2
أعِد كتابة العبارة.
خطوة 9.3
بسّط العبارة.
خطوة 9.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 9.3.2
اضرب في .
خطوة 9.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 9.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
غير معرّف
خطوة 10
بما أن اختبار المشتق الأول فشل، إذن لا توجد قيم قصوى محلية.
لا توجد قيمة قصوى محلية
خطوة 11