حساب التفاضل والتكامل الأمثلة

Encuentre la derivada de Second f(x)=-1/2x^2+x^3+x^4-3/20x^5
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.2.4
اجمع و.
خطوة 1.2.5
اجمع و.
خطوة 1.2.6
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.6.1
أخرِج العامل من .
خطوة 1.2.6.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.6.2.1
أخرِج العامل من .
خطوة 1.2.6.2.2
ألغِ العامل المشترك.
خطوة 1.2.6.2.3
أعِد كتابة العبارة.
خطوة 1.2.6.2.4
اقسِم على .
خطوة 1.3
أوجِد المشتقة باستخدام قاعدة القوة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4.3
اضرب في .
خطوة 1.4.4
اجمع و.
خطوة 1.4.5
اضرب في .
خطوة 1.4.6
اجمع و.
خطوة 1.4.7
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.7.1
أخرِج العامل من .
خطوة 1.4.7.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.7.2.1
أخرِج العامل من .
خطوة 1.4.7.2.2
ألغِ العامل المشترك.
خطوة 1.4.7.2.3
أعِد كتابة العبارة.
خطوة 1.4.8
انقُل السالب أمام الكسر.
خطوة 1.5
أعِد ترتيب الحدود.
خطوة 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
اضرب في .
خطوة 2.2.4
اجمع و.
خطوة 2.2.5
اضرب في .
خطوة 2.2.6
اجمع و.
خطوة 2.2.7
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.7.1
أخرِج العامل من .
خطوة 2.2.7.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.7.2.1
أخرِج العامل من .
خطوة 2.2.7.2.2
ألغِ العامل المشترك.
خطوة 2.2.7.2.3
أعِد كتابة العبارة.
خطوة 2.2.7.2.4
اقسِم على .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4.3
اضرب في .
خطوة 2.5
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.5.3
اضرب في .
خطوة 3
المشتق الثاني لـ بالنسبة إلى هو .