إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.2.1
انقُل النهاية داخل اللوغاريتم.
خطوة 1.2.2
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.2.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.2.4
بسّط الحدود.
خطوة 1.2.4.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.2.4.2
بسّط الإجابة.
خطوة 1.2.4.2.1
اضرب في .
خطوة 1.2.4.2.2
أضف و.
خطوة 1.2.4.2.3
اللوغاريتم الطبيعي لـ يساوي .
خطوة 1.3
احسِب قيمة حد القاسم.
خطوة 1.3.1
احسِب قيمة النهاية.
خطوة 1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.3.1.2
انقُل النهاية إلى الأُس.
خطوة 1.3.1.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.3.1.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.3.1.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.3.3
بسّط الإجابة.
خطوة 1.3.3.1
بسّط كل حد.
خطوة 1.3.3.1.1
أضف و.
خطوة 1.3.3.1.2
أي شيء مرفوع إلى هو .
خطوة 1.3.3.1.3
اضرب في .
خطوة 1.3.3.2
اطرح من .
خطوة 1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 3
خطوة 3.1
أوجِد مشتقة البسط والقاسم.
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.5
أضف و.
خطوة 3.6
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.8
اضرب في .
خطوة 3.9
اجمع و.
خطوة 3.10
انقُل السالب أمام الكسر.
خطوة 3.11
بسّط.
خطوة 3.11.1
أعِد كتابة بالصيغة .
خطوة 3.11.2
أخرِج العامل من .
خطوة 3.11.3
أخرِج العامل من .
خطوة 3.11.4
انقُل السالب أمام الكسر.
خطوة 3.11.5
اضرب في .
خطوة 3.11.6
اضرب في .
خطوة 3.12
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.13
احسِب قيمة .
خطوة 3.13.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.13.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.13.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.13.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.13.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.13.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.13.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.13.5
أضف و.
خطوة 3.13.6
اضرب في .
خطوة 3.14
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.15
أضف و.
خطوة 4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 5
اضرب في .
خطوة 6
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 7
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 8
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 9
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 10
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 11
انقُل النهاية إلى الأُس.
خطوة 12
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 13
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 14
خطوة 14.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 14.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 15
خطوة 15.1
بسّط القاسم.
خطوة 15.1.1
اطرح من .
خطوة 15.1.2
أضف و.
خطوة 15.1.3
أي شيء مرفوع إلى هو .
خطوة 15.2
اضرب في .
خطوة 15.3
اقسِم على .