حساب التفاضل والتكامل الأمثلة

أوجد قيمة التكامل التكامل من 0 إلى 1 لـ e^(1-2x) بالنسبة إلى x
خطوة 1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد مشتقة .
خطوة 1.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.4
اطرح من .
خطوة 1.2
عوّض بالنهاية الدنيا عن في .
خطوة 1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
اضرب في .
خطوة 1.3.2
أضف و.
خطوة 1.4
عوّض بالنهاية العليا عن في .
خطوة 1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
اضرب في .
خطوة 1.5.2
اطرح من .
خطوة 1.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 1.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
انقُل السالب أمام الكسر.
خطوة 2.2
اجمع و.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5
تكامل بالنسبة إلى هو .
خطوة 6
عوّض وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
احسِب قيمة في وفي .
خطوة 6.2
بسّط.
خطوة 7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 7.2
طبّق خاصية التوزيع.
خطوة 7.3
اضرب في .
خطوة 7.4
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 7.4.1
اضرب في .
خطوة 7.4.2
اضرب في .
خطوة 7.4.3
اجمع و.
خطوة 7.5
انقُل إلى يسار .
خطوة 8
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
خطوة 9