حساب التفاضل والتكامل الأمثلة

خطوة 1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أخرِج العامل من .
خطوة 2.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
أخرِج العامل من .
خطوة 2.1.2.2
ألغِ العامل المشترك.
خطوة 2.1.2.3
أعِد كتابة العبارة.
خطوة 2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.5
اجمع و.
خطوة 2.6
اجمع البسوط على القاسم المشترك.
خطوة 2.7
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.7.1
اضرب في .
خطوة 2.7.2
اطرح من .
خطوة 2.8
انقُل السالب أمام الكسر.
خطوة 2.9
اجمع و.
خطوة 2.10
اضرب في .
خطوة 2.11
اجمع و.
خطوة 2.12
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 2.13
أخرِج العامل من .
خطوة 2.14
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.14.1
أخرِج العامل من .
خطوة 2.14.2
ألغِ العامل المشترك.
خطوة 2.14.3
أعِد كتابة العبارة.
خطوة 2.15
انقُل السالب أمام الكسر.
خطوة 3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3
اضرب في .
خطوة 4
أعِد ترتيب الحدود.