حساب التفاضل والتكامل الأمثلة

خطوة 1
اكتب في صورة دالة.
خطوة 2
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 3
عيّن التكامل لإيجاد الحل.
خطوة 4
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
أوجِد مشتقة .
خطوة 4.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.3.3
اضرب في .
خطوة 4.1.4
اطرح من .
خطوة 4.2
أعِد كتابة المسألة باستخدام و.
خطوة 5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 5.2
اضرب في مقلوب الكسر للقسمة على .
خطوة 5.3
اضرب في .
خطوة 5.4
اضرب في .
خطوة 5.5
أخرِج السالب.
خطوة 5.6
ارفع إلى القوة .
خطوة 5.7
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 7
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 7.1.1
أوجِد مشتقة .
خطوة 7.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 7.1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 7.1.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 7.1.5
أضف و.
خطوة 7.2
أعِد كتابة المسألة باستخدام و.
خطوة 8
تكامل بالنسبة إلى هو .
خطوة 9
أعِد كتابة بالصيغة .
خطوة 10
عوّض مجددًا بقيمة كل متغير في التكامل بالتعويض.
انقر لعرض المزيد من الخطوات...
خطوة 10.1
استبدِل كافة حالات حدوث بـ .
خطوة 10.2
استبدِل كافة حالات حدوث بـ .
خطوة 11
اجمع و.
خطوة 12
أعِد ترتيب الحدود.
خطوة 13
الإجابة هي المشتق العكسي للدالة .