حساب التفاضل والتكامل الأمثلة

خطوة 1
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 2
عيّن التكامل لإيجاد الحل.
خطوة 3
أوجِد التكامل بالتجزئة باستخدام القاعدة ، حيث و.
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اجمع و.
خطوة 4.2
اجمع و.
خطوة 5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
أوجِد مشتقة .
خطوة 6.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 6.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 6.1.4
اضرب في .
خطوة 6.2
أعِد كتابة المسألة باستخدام و.
خطوة 7
اجمع و.
خطوة 8
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 9
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
اضرب في .
خطوة 9.2
اضرب في .
خطوة 10
تكامل بالنسبة إلى هو .
خطوة 11
أعِد كتابة بالصيغة .
خطوة 12
استبدِل كافة حالات حدوث بـ .
خطوة 13
الإجابة هي المشتق العكسي للدالة .