حساب التفاضل والتكامل الأمثلة

قييم النهاية النهاية عند اقتراب t من 0 لـ (sin(t))/( اللوغاريتم الطبيعي لـ 2e^t-1)
خطوة 1
طبّق قاعدة لوبيتال.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 1.1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.3
القيمة الدقيقة لـ هي .
خطوة 1.1.3
احسِب قيمة حد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1.1
انقُل النهاية داخل اللوغاريتم.
خطوة 1.1.3.1.2
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.1.3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.1.3.1.4
انقُل النهاية إلى الأُس.
خطوة 1.1.3.1.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.1.1
أي شيء مرفوع إلى هو .
خطوة 1.1.3.3.1.2
اضرب في .
خطوة 1.1.3.3.1.3
اضرب في .
خطوة 1.1.3.3.2
اطرح من .
خطوة 1.1.3.3.3
اللوغاريتم الطبيعي لـ يساوي .
خطوة 1.1.3.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.3.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.5
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.6
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.3.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.8
أضف و.
خطوة 1.3.9
اجمع و.
خطوة 1.3.10
اجمع و.
خطوة 1.4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.5
اجمع و.
خطوة 2
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.2
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 2.3
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 2.4
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 2.5
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.6
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.7
انقُل النهاية إلى الأُس.
خطوة 2.8
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.9
انقُل النهاية إلى الأُس.
خطوة 3
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 3.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اجمع.
خطوة 4.2
اضرب في .
خطوة 4.3
أي شيء مرفوع إلى هو .
خطوة 4.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.1
أي شيء مرفوع إلى هو .
خطوة 4.4.2
اضرب في .
خطوة 4.4.3
اضرب في .
خطوة 4.4.4
اطرح من .
خطوة 4.4.5
القيمة الدقيقة لـ هي .
خطوة 4.4.6
اضرب في .
خطوة 4.5
اضرب في .
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: