حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد المشتقة باستخدام قاعدة المضاعف الثابت.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اجمع و.
خطوة 1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
اجمع و.
خطوة 3.2.2
اجمع و.
خطوة 3.2.3
اجمع و.
خطوة 3.2.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.4.1
أخرِج العامل من .
خطوة 3.2.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.4.2.1
أخرِج العامل من .
خطوة 3.2.4.2.2
ألغِ العامل المشترك.
خطوة 3.2.4.2.3
أعِد كتابة العبارة.
خطوة 3.2.4.2.4
اقسِم على .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4
اضرب في .