إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2
خطوة 2.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 2.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 2.1.2
احسِب قيمة حد بسط الكسر.
خطوة 2.1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.1.2.3
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 2.1.2.4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.1.2.5
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 2.1.2.6
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 2.1.2.6.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.6.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.7
بسّط الإجابة.
خطوة 2.1.2.7.1
بسّط كل حد.
خطوة 2.1.2.7.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 2.1.2.7.1.2
اضرب في .
خطوة 2.1.2.7.1.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 2.1.2.7.1.4
اضرب في .
خطوة 2.1.2.7.2
أضف و.
خطوة 2.1.3
احسِب قيمة حد القاسم.
خطوة 2.1.3.1
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 2.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.3.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 2.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 2.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 2.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 2.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3
احسِب قيمة .
خطوة 2.3.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3.3
اضرب في .
خطوة 2.3.4
احسِب قيمة .
خطوة 2.3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.4.3
اضرب في .
خطوة 2.3.5
أعِد ترتيب الحدود.
خطوة 2.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 4
خطوة 4.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 4.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 4.1.2
احسِب قيمة حد بسط الكسر.
خطوة 4.1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 4.1.2.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 4.1.2.3
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 4.1.2.4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 4.1.2.5
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 4.1.2.5.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.1.2.5.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.1.2.6
بسّط الإجابة.
خطوة 4.1.2.6.1
بسّط كل حد.
خطوة 4.1.2.6.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.1.2.6.1.2
اضرب في .
خطوة 4.1.2.6.1.3
اضرب في .
خطوة 4.1.2.6.2
أضف و.
خطوة 4.1.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 4.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 4.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 4.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 4.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.3
احسِب قيمة .
خطوة 4.3.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.3.3
اضرب في .
خطوة 4.3.4
احسِب قيمة .
خطوة 4.3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.4.3
اضرب في .
خطوة 4.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.4
اقسِم على .
خطوة 5
خطوة 5.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 5.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 5.3
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 5.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 6
احسِب قيمة حد بالتعويض عن بـ .
خطوة 7
خطوة 7.1
انقُل السالب أمام الكسر.
خطوة 7.2
اضرب .
خطوة 7.2.1
اضرب في .
خطوة 7.2.2
اضرب في .
خطوة 7.3
بسّط كل حد.
خطوة 7.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 7.3.2
اضرب في .
خطوة 7.4
أضف و.
خطوة 7.5
ألغِ العامل المشترك لـ .
خطوة 7.5.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 7.5.2
أخرِج العامل من .
خطوة 7.5.3
أخرِج العامل من .
خطوة 7.5.4
ألغِ العامل المشترك.
خطوة 7.5.5
أعِد كتابة العبارة.
خطوة 7.6
اجمع و.
خطوة 7.7
اضرب في .
خطوة 7.8
انقُل السالب أمام الكسر.
خطوة 8
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: