حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى/الصغرى f(x)=1/3x^3+1/2x^2-6x
خطوة 1
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اجمع و.
خطوة 1.2.4
اجمع و.
خطوة 1.2.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.5.1
ألغِ العامل المشترك.
خطوة 1.2.5.2
اقسِم على .
خطوة 1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
اجمع و.
خطوة 1.3.4
اجمع و.
خطوة 1.3.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.5.1
ألغِ العامل المشترك.
خطوة 1.3.5.2
اقسِم على .
خطوة 1.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4.3
اضرب في .
خطوة 2
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.5
أضف و.
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.3
اجمع و.
خطوة 4.1.2.4
اجمع و.
خطوة 4.1.2.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.5.1
ألغِ العامل المشترك.
خطوة 4.1.2.5.2
اقسِم على .
خطوة 4.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.3.3
اجمع و.
خطوة 4.1.3.4
اجمع و.
خطوة 4.1.3.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.5.1
ألغِ العامل المشترك.
خطوة 4.1.3.5.2
اقسِم على .
خطوة 4.1.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.4.3
اضرب في .
خطوة 4.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 5
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 5.2
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 5.2.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 5.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 5.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.4.2
أضف إلى كلا المتعادلين.
خطوة 5.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.5.2
اطرح من كلا المتعادلين.
خطوة 5.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 6
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 7
النقاط الحرجة اللازم حساب قيمتها.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
اضرب في .
خطوة 9.2
أضف و.
خطوة 10
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
خطوة 11
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 11.1
استبدِل المتغير بـ في العبارة.
خطوة 11.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1.1
ارفع إلى القوة .
خطوة 11.2.1.2
اجمع و.
خطوة 11.2.1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1.3.1
أخرِج العامل من .
خطوة 11.2.1.3.2
ألغِ العامل المشترك.
خطوة 11.2.1.3.3
أعِد كتابة العبارة.
خطوة 11.2.1.4
اضرب في .
خطوة 11.2.2
أوجِد القاسم المشترك.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.2.1
اكتب على هيئة كسر قاسمه .
خطوة 11.2.2.2
اضرب في .
خطوة 11.2.2.3
اضرب في .
خطوة 11.2.2.4
اكتب على هيئة كسر قاسمه .
خطوة 11.2.2.5
اضرب في .
خطوة 11.2.2.6
اضرب في .
خطوة 11.2.3
اجمع البسوط على القاسم المشترك.
خطوة 11.2.4
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.4.1
اضرب في .
خطوة 11.2.4.2
اضرب في .
خطوة 11.2.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.5.1
أضف و.
خطوة 11.2.5.2
اطرح من .
خطوة 11.2.5.3
انقُل السالب أمام الكسر.
خطوة 11.2.6
الإجابة النهائية هي .
خطوة 12
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 13
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 13.1
اضرب في .
خطوة 13.2
أضف و.
خطوة 14
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
خطوة 15
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 15.1
استبدِل المتغير بـ في العبارة.
خطوة 15.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 15.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 15.2.1.1
ارفع إلى القوة .
خطوة 15.2.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 15.2.1.2.1
أخرِج العامل من .
خطوة 15.2.1.2.2
ألغِ العامل المشترك.
خطوة 15.2.1.2.3
أعِد كتابة العبارة.
خطوة 15.2.1.3
ارفع إلى القوة .
خطوة 15.2.1.4
اجمع و.
خطوة 15.2.1.5
اضرب في .
خطوة 15.2.2
أوجِد القاسم المشترك.
انقر لعرض المزيد من الخطوات...
خطوة 15.2.2.1
اكتب على هيئة كسر قاسمه .
خطوة 15.2.2.2
اضرب في .
خطوة 15.2.2.3
اضرب في .
خطوة 15.2.2.4
اكتب على هيئة كسر قاسمه .
خطوة 15.2.2.5
اضرب في .
خطوة 15.2.2.6
اضرب في .
خطوة 15.2.3
اجمع البسوط على القاسم المشترك.
خطوة 15.2.4
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 15.2.4.1
اضرب في .
خطوة 15.2.4.2
اضرب في .
خطوة 15.2.5
بسّط بجمع الأعداد.
انقر لعرض المزيد من الخطوات...
خطوة 15.2.5.1
أضف و.
خطوة 15.2.5.2
أضف و.
خطوة 15.2.6
الإجابة النهائية هي .
خطوة 16
هذه هي القيم القصوى المحلية لـ .
هي نقاط دنيا محلية
هي نقطة قصوى محلية
خطوة 17