إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.1.2.1
احسِب قيمة النهاية.
خطوة 1.1.2.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.1.2
انقُل النهاية أسفل علامة الجذر.
خطوة 1.1.2.1.3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.1.2.1.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.3
بسّط الإجابة.
خطوة 1.1.2.3.1
بسّط كل حد.
خطوة 1.1.2.3.1.1
اضرب في .
خطوة 1.1.2.3.1.2
أعِد كتابة بالصيغة .
خطوة 1.1.2.3.1.3
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 1.1.2.3.1.4
اضرب في .
خطوة 1.1.2.3.2
اطرح من .
خطوة 1.1.3
احسِب قيمة حد القاسم.
خطوة 1.1.3.1
احسِب قيمة النهاية.
خطوة 1.1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.1.2
انقُل النهاية أسفل علامة الجذر.
خطوة 1.1.3.1.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.1.4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.1.3.1.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.3.1.6
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.3
بسّط الإجابة.
خطوة 1.1.3.3.1
بسّط كل حد.
خطوة 1.1.3.3.1.1
اضرب في .
خطوة 1.1.3.3.1.2
اضرب في .
خطوة 1.1.3.3.1.3
اطرح من .
خطوة 1.1.3.3.1.4
أعِد كتابة بالصيغة .
خطوة 1.1.3.3.1.5
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 1.1.3.3.1.6
اضرب في .
خطوة 1.1.3.3.2
اطرح من .
خطوة 1.1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3
احسِب قيمة .
خطوة 1.3.3.1
استخدِم لكتابة في صورة .
خطوة 1.3.3.2
أخرِج العامل من .
خطوة 1.3.3.3
طبّق قاعدة الضرب على .
خطوة 1.3.3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3.6
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.3.3.7
اجمع و.
خطوة 1.3.3.8
اجمع البسوط على القاسم المشترك.
خطوة 1.3.3.9
بسّط بَسْط الكسر.
خطوة 1.3.3.9.1
اضرب في .
خطوة 1.3.3.9.2
اطرح من .
خطوة 1.3.3.10
انقُل السالب أمام الكسر.
خطوة 1.3.3.11
اجمع و.
خطوة 1.3.3.12
اجمع و.
خطوة 1.3.3.13
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.3.3.14
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.3.3.15
اضرب في بجمع الأُسس.
خطوة 1.3.3.15.1
اضرب في .
خطوة 1.3.3.15.1.1
ارفع إلى القوة .
خطوة 1.3.3.15.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.3.3.15.2
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 1.3.3.15.3
اجمع البسوط على القاسم المشترك.
خطوة 1.3.3.15.4
اطرح من .
خطوة 1.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.5
أضف و.
خطوة 1.3.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.7
احسِب قيمة .
خطوة 1.3.7.1
استخدِم لكتابة في صورة .
خطوة 1.3.7.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.3.7.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.7.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.7.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.7.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.7.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.7.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.7.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.7.7
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.3.7.8
اجمع و.
خطوة 1.3.7.9
اجمع البسوط على القاسم المشترك.
خطوة 1.3.7.10
بسّط بَسْط الكسر.
خطوة 1.3.7.10.1
اضرب في .
خطوة 1.3.7.10.2
اطرح من .
خطوة 1.3.7.11
انقُل السالب أمام الكسر.
خطوة 1.3.7.12
اضرب في .
خطوة 1.3.7.13
أضف و.
خطوة 1.3.7.14
اجمع و.
خطوة 1.3.7.15
اجمع و.
خطوة 1.3.7.16
انقُل إلى يسار .
خطوة 1.3.7.17
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.3.7.18
أخرِج العامل من .
خطوة 1.3.7.19
ألغِ العوامل المشتركة.
خطوة 1.3.7.19.1
أخرِج العامل من .
خطوة 1.3.7.19.2
ألغِ العامل المشترك.
خطوة 1.3.7.19.3
أعِد كتابة العبارة.
خطوة 1.3.8
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.9
أضف و.
خطوة 1.4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.5
حوّل الأُسس الكسرية إلى جذور.
خطوة 1.5.1
أعِد كتابة بالصيغة .
خطوة 1.5.2
أعِد كتابة بالصيغة .
خطوة 1.5.3
أعِد كتابة بالصيغة .
خطوة 1.6
جمّع العوامل.
خطوة 1.6.1
اجمع باستخدام قاعدة ضرب الجذور.
خطوة 1.6.2
اضرب في .
خطوة 2
خطوة 2.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.2
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 2.3
انقُل النهاية أسفل علامة الجذر.
خطوة 2.4
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.5
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.6
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.7
انقُل النهاية أسفل علامة الجذر.
خطوة 2.8
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3
خطوة 3.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4
خطوة 4.1
بسّط بَسْط الكسر.
خطوة 4.1.1
اضرب في .
خطوة 4.1.2
اضرب في .
خطوة 4.1.3
اطرح من .
خطوة 4.1.4
أعِد كتابة بالصيغة .
خطوة 4.1.5
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 4.2
بسّط القاسم.
خطوة 4.2.1
اضرب في .
خطوة 4.2.2
أعِد كتابة بالصيغة .
خطوة 4.2.3
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 4.3
اضرب .
خطوة 4.3.1
اضرب في .
خطوة 4.3.2
اضرب في .
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: