حساب التفاضل والتكامل الأمثلة

أوجد نقاط الانعطاف 1/6x^4-2x^3-7x^2
خطوة 1
اكتب في صورة دالة.
خطوة 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.3
اجمع و.
خطوة 2.1.2.4
اجمع و.
خطوة 2.1.2.5
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.1
أخرِج العامل من .
خطوة 2.1.2.5.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.2.1
أخرِج العامل من .
خطوة 2.1.2.5.2.2
ألغِ العامل المشترك.
خطوة 2.1.2.5.2.3
أعِد كتابة العبارة.
خطوة 2.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.3.3
اضرب في .
خطوة 2.1.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.4.3
اضرب في .
خطوة 2.2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.2.3
اجمع و.
خطوة 2.2.2.4
اضرب في .
خطوة 2.2.2.5
اجمع و.
خطوة 2.2.2.6
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.6.1
أخرِج العامل من .
خطوة 2.2.2.6.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.6.2.1
أخرِج العامل من .
خطوة 2.2.2.6.2.2
ألغِ العامل المشترك.
خطوة 2.2.2.6.2.3
أعِد كتابة العبارة.
خطوة 2.2.2.6.2.4
اقسِم على .
خطوة 2.2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3.3
اضرب في .
خطوة 2.2.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.4.3
اضرب في .
خطوة 2.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 3
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 3.2
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
أخرِج العامل من .
خطوة 3.2.1.2
أخرِج العامل من .
خطوة 3.2.1.3
أخرِج العامل من .
خطوة 3.2.1.4
أخرِج العامل من .
خطوة 3.2.1.5
أخرِج العامل من .
خطوة 3.2.2
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 3.2.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 3.2.2.2
احذِف الأقواس غير الضرورية.
خطوة 3.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.4.2
أضف إلى كلا المتعادلين.
خطوة 3.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.5.2
اطرح من كلا المتعادلين.
خطوة 3.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
أوجِد النقاط التي يكون فيها المشتق الثاني هو .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عوّض بقيمة في لإيجاد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
استبدِل المتغير بـ في العبارة.
خطوة 4.1.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.1
ارفع إلى القوة .
خطوة 4.1.2.1.2
اجمع و.
خطوة 4.1.2.1.3
ارفع إلى القوة .
خطوة 4.1.2.1.4
اضرب في .
خطوة 4.1.2.1.5
ارفع إلى القوة .
خطوة 4.1.2.1.6
اضرب في .
خطوة 4.1.2.2
أوجِد القاسم المشترك.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.2.1
اكتب على هيئة كسر قاسمه .
خطوة 4.1.2.2.2
اضرب في .
خطوة 4.1.2.2.3
اضرب في .
خطوة 4.1.2.2.4
اكتب على هيئة كسر قاسمه .
خطوة 4.1.2.2.5
اضرب في .
خطوة 4.1.2.2.6
اضرب في .
خطوة 4.1.2.3
اجمع البسوط على القاسم المشترك.
خطوة 4.1.2.4
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.4.1
اضرب في .
خطوة 4.1.2.4.2
اضرب في .
خطوة 4.1.2.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.5.1
اطرح من .
خطوة 4.1.2.5.2
اطرح من .
خطوة 4.1.2.5.3
انقُل السالب أمام الكسر.
خطوة 4.1.2.6
الإجابة النهائية هي .
خطوة 4.2
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 4.3
عوّض بقيمة في لإيجاد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
استبدِل المتغير بـ في العبارة.
خطوة 4.3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.1
ارفع إلى القوة .
خطوة 4.3.2.1.2
اضرب في .
خطوة 4.3.2.1.3
ارفع إلى القوة .
خطوة 4.3.2.1.4
اضرب في .
خطوة 4.3.2.1.5
ارفع إلى القوة .
خطوة 4.3.2.1.6
اضرب في .
خطوة 4.3.2.2
أوجِد القاسم المشترك.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.2.1
اكتب على هيئة كسر قاسمه .
خطوة 4.3.2.2.2
اضرب في .
خطوة 4.3.2.2.3
اضرب في .
خطوة 4.3.2.2.4
اكتب على هيئة كسر قاسمه .
خطوة 4.3.2.2.5
اضرب في .
خطوة 4.3.2.2.6
اضرب في .
خطوة 4.3.2.3
اجمع البسوط على القاسم المشترك.
خطوة 4.3.2.4
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.4.1
اضرب في .
خطوة 4.3.2.4.2
اضرب في .
خطوة 4.3.2.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.5.1
أضف و.
خطوة 4.3.2.5.2
اطرح من .
خطوة 4.3.2.5.3
انقُل السالب أمام الكسر.
خطوة 4.3.2.6
الإجابة النهائية هي .
خطوة 4.4
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 4.5
حدد النقاط التي يمكن أن تكون نقاط انقلاب.
خطوة 5
قسّم إلى فترات حول النقاط التي من المحتمل أن تكون نقاط انقلاب.
خطوة 6
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
ارفع إلى القوة .
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
اضرب في .
خطوة 6.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
أضف و.
خطوة 6.2.2.2
اطرح من .
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 7
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.1.3
اضرب في .
خطوة 7.2.2
بسّط بطرح الأعداد.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1
اطرح من .
خطوة 7.2.2.2
اطرح من .
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 8
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
استبدِل المتغير بـ في العبارة.
خطوة 8.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1.1
ارفع إلى القوة .
خطوة 8.2.1.2
اضرب في .
خطوة 8.2.1.3
اضرب في .
خطوة 8.2.2
بسّط بطرح الأعداد.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.2.1
اطرح من .
خطوة 8.2.2.2
اطرح من .
خطوة 8.2.3
الإجابة النهائية هي .
خطوة 8.3
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 9
نقطة الانقلاب هي نقطة على منحنى يغيّر التقعر عندها العلامة من موجب إلى سالب أو من سالب إلى موجب. نقاط الانقلاب في هذه الحالة هي .
خطوة 10