إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.2
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.1.2.3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.1.2.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.2.5
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.1.2.5.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.5.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.6
بسّط الإجابة.
خطوة 1.1.2.6.1
بسّط كل حد.
خطوة 1.1.2.6.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.1.2.6.1.2
اضرب في .
خطوة 1.1.2.6.1.3
اضرب في .
خطوة 1.1.2.6.2
أضف و.
خطوة 1.1.2.6.3
اطرح من .
خطوة 1.1.3
احسِب قيمة حد القاسم.
خطوة 1.1.3.1
احسِب قيمة النهاية.
خطوة 1.1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.1.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.3.1.3
انقُل النهاية أسفل علامة الجذر.
خطوة 1.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.3
بسّط الإجابة.
خطوة 1.1.3.3.1
بسّط كل حد.
خطوة 1.1.3.3.1.1
أي جذر لـ هو .
خطوة 1.1.3.3.1.2
اضرب في .
خطوة 1.1.3.3.2
اطرح من .
خطوة 1.1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.4
احسِب قيمة .
خطوة 1.3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.4.3
اضرب في .
خطوة 1.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.6
أضف و.
خطوة 1.3.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.8
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.9
احسِب قيمة .
خطوة 1.3.9.1
استخدِم لكتابة في صورة .
خطوة 1.3.9.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.9.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.9.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.3.9.5
اجمع و.
خطوة 1.3.9.6
اجمع البسوط على القاسم المشترك.
خطوة 1.3.9.7
بسّط بَسْط الكسر.
خطوة 1.3.9.7.1
اضرب في .
خطوة 1.3.9.7.2
اطرح من .
خطوة 1.3.9.8
انقُل السالب أمام الكسر.
خطوة 1.3.9.9
اجمع و.
خطوة 1.3.9.10
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.3.10
اطرح من .
خطوة 1.4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.5
أعِد كتابة بالصيغة .
خطوة 1.6
اضرب في .
خطوة 2
خطوة 2.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.2
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 2.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.6
انقُل النهاية أسفل علامة الجذر.
خطوة 3
خطوة 3.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4
خطوة 4.1
اضرب في .
خطوة 4.2
أضف و.
خطوة 4.3
اضرب في .
خطوة 4.4
أي جذر لـ هو .
خطوة 4.5
اضرب في .