حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
أوجِد مشتقة المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
انقُل إلى يسار .
خطوة 2.4
أعِد كتابة بالصيغة .
خطوة 2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.6
أعِد الترتيب.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1
انقُل إلى يسار .
خطوة 2.6.2
أعِد ترتيب الحدود.
خطوة 3
أوجِد مشتقة المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3
أعِد كتابة بالصيغة .
خطوة 3.4
أعِد ترتيب عوامل .
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أعِد ترتيب العوامل في .
خطوة 5.2
اطرح من كلا المتعادلين.
خطوة 5.3
اطرح من كلا المتعادلين.
خطوة 5.4
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
أخرِج العامل من .
خطوة 5.4.2
أخرِج العامل من .
خطوة 5.4.3
أخرِج العامل من .
خطوة 5.5
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1
اقسِم كل حد في على .
خطوة 5.5.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.2.1.1
ألغِ العامل المشترك.
خطوة 5.5.2.1.2
اقسِم على .
خطوة 5.5.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.3.1
انقُل السالب أمام الكسر.
خطوة 6
استبدِل بـ .