إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة دالة.
خطوة 2
خطوة 2.1
أوجِد المشتق الثاني.
خطوة 2.1.1
أوجِد المشتق الأول.
خطوة 2.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.1.2
احسِب قيمة .
خطوة 2.1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.1.2.3
اضرب في .
خطوة 2.1.1.2.4
اجمع و.
خطوة 2.1.1.2.5
اجمع و.
خطوة 2.1.1.2.6
احذِف العامل المشترك لـ و.
خطوة 2.1.1.2.6.1
أخرِج العامل من .
خطوة 2.1.1.2.6.2
ألغِ العوامل المشتركة.
خطوة 2.1.1.2.6.2.1
أخرِج العامل من .
خطوة 2.1.1.2.6.2.2
ألغِ العامل المشترك.
خطوة 2.1.1.2.6.2.3
أعِد كتابة العبارة.
خطوة 2.1.1.2.6.2.4
اقسِم على .
خطوة 2.1.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2
أوجِد المشتق الثاني.
خطوة 2.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.2
احسِب قيمة .
خطوة 2.1.2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.2.3
اضرب في .
خطوة 2.1.2.3
احسِب قيمة .
خطوة 2.1.2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.3.3
اضرب في .
خطوة 2.1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 2.2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
خطوة 2.2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 2.2.2
اطرح من كلا المتعادلين.
خطوة 2.2.3
اقسِم كل حد في على وبسّط.
خطوة 2.2.3.1
اقسِم كل حد في على .
خطوة 2.2.3.2
بسّط الطرف الأيسر.
خطوة 2.2.3.2.1
ألغِ العامل المشترك لـ .
خطوة 2.2.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.3.2.1.2
اقسِم على .
خطوة 2.2.3.3
بسّط الطرف الأيمن.
خطوة 2.2.3.3.1
اقسِم على .
خطوة 3
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 4
أنشئ فترات حول القيم التي يكون عندها المشتق الثاني مساويًا لصفر أو غير معرّف.
خطوة 5
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
خطوة 5.2.1
اضرب في .
خطوة 5.2.2
أضف و.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
اضرب في .
خطوة 6.2.2
أضف و.
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 7
يكون الرسم البياني مقعرًا لأسفل إذا كان المشتق الثاني سالبًا ومقعرًا لأعلى إذا كان المشتق الثاني موجبًا.
مقعر لأعلى خلال بما أن موجبة
مقعر لأسفل خلال بما أن سالبة
خطوة 8