إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
خطوة 2.1
أوجِد المشتقة.
خطوة 2.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2
احسِب قيمة .
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أعِد كتابة بالصيغة .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
احسِب قيمة .
خطوة 2.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.4.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.4.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.4.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.4.3
أعِد كتابة بالصيغة .
خطوة 2.4.4
اضرب في .
خطوة 2.5
أعِد ترتيب الحدود.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
خطوة 5.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 5.1.1
اطرح من كلا المتعادلين.
خطوة 5.1.2
اطرح من كلا المتعادلين.
خطوة 5.2
أخرِج العامل من .
خطوة 5.2.1
أخرِج العامل من .
خطوة 5.2.2
أخرِج العامل من .
خطوة 5.2.3
أخرِج العامل من .
خطوة 5.3
أعِد كتابة بالصيغة .
خطوة 5.4
أعِد كتابة بالصيغة .
خطوة 5.5
حلّل إلى عوامل.
خطوة 5.5.1
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 5.5.2
احذِف الأقواس غير الضرورية.
خطوة 5.6
اقسِم كل حد في على وبسّط.
خطوة 5.6.1
اقسِم كل حد في على .
خطوة 5.6.2
بسّط الطرف الأيسر.
خطوة 5.6.2.1
ألغِ العامل المشترك لـ .
خطوة 5.6.2.1.1
ألغِ العامل المشترك.
خطوة 5.6.2.1.2
أعِد كتابة العبارة.
خطوة 5.6.2.2
ألغِ العامل المشترك لـ .
خطوة 5.6.2.2.1
ألغِ العامل المشترك.
خطوة 5.6.2.2.2
اقسِم على .
خطوة 5.6.3
بسّط الطرف الأيمن.
خطوة 5.6.3.1
بسّط كل حد.
خطوة 5.6.3.1.1
انقُل السالب أمام الكسر.
خطوة 5.6.3.1.2
انقُل السالب أمام الكسر.
خطوة 6
استبدِل بـ .