إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.2.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.2.3
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.2.4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.2.5
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.2.5.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.2.5.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.2.6
بسّط الإجابة.
خطوة 1.2.6.1
بسّط كل حد.
خطوة 1.2.6.1.1
ارفع إلى القوة .
خطوة 1.2.6.1.2
اضرب في .
خطوة 1.2.6.1.3
اضرب في .
خطوة 1.2.6.2
اطرح من .
خطوة 1.3
احسِب قيمة حد القاسم.
خطوة 1.3.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.3.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.3.3
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 1.3.4
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.3.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.3.6
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.3.7
بسّط الحدود.
خطوة 1.3.7.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.3.7.2
بسّط الإجابة.
خطوة 1.3.7.2.1
بسّط كل حد.
خطوة 1.3.7.2.1.1
اضرب في .
خطوة 1.3.7.2.1.2
أضف و.
خطوة 1.3.7.2.1.3
القيمة الدقيقة لـ هي .
خطوة 1.3.7.2.1.4
اضرب في .
خطوة 1.3.7.2.1.5
اضرب في .
خطوة 1.3.7.2.2
اطرح من .
خطوة 1.3.7.2.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.3.7.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.3.8
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 3
خطوة 3.1
أوجِد مشتقة البسط والقاسم.
خطوة 3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3
احسِب قيمة .
خطوة 3.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.3
اضرب في .
خطوة 3.4
احسِب قيمة .
خطوة 3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4.3
اضرب في .
خطوة 3.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.6
احسِب قيمة .
خطوة 3.6.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.6.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.6.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.6.2.2
مشتق بالنسبة إلى يساوي .
خطوة 3.6.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.6.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.6.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.6.5
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.6.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.6.7
اضرب في .
خطوة 3.6.8
اطرح من .
خطوة 3.6.9
اضرب في .
خطوة 3.6.10
اضرب في .
خطوة 3.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.8
أضف و.
خطوة 4
بما أن الدالة تقترب بمقدار من جهة اليسار وبمقدار من جهة اليمين، إذن لا توجد نهاية.