إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.5
أضف و.
خطوة 2.6
اضرب في .
خطوة 3
مشتق بالنسبة إلى يساوي .
خطوة 4
خطوة 4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3
اضرب في .
خطوة 5
خطوة 5.1
جمّع الحدود.
خطوة 5.1.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.1.2
اجمع البسوط على القاسم المشترك.
خطوة 5.1.3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.1.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.1.5
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 5.1.5.1
اضرب في .
خطوة 5.1.5.2
اضرب في .
خطوة 5.1.5.3
أعِد ترتيب عوامل .
خطوة 5.1.6
اجمع البسوط على القاسم المشترك.
خطوة 5.2
أعِد ترتيب الحدود.