إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 2
عيّن التكامل لإيجاد الحل.
خطوة 3
أعِد ترتيب و.
خطوة 4
خطوة 4.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
+ | + |
خطوة 4.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | + |
خطوة 4.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | + | ||||||
+ | + |
خطوة 4.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | + | ||||||
- | - |
خطوة 4.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | + | ||||||
- | - | ||||||
- |
خطوة 4.6
الإجابة النهائية هي ناتج القسمة زائد الباقي على المقسوم عليه.
خطوة 5
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 6
طبّق قاعدة الثابت.
خطوة 7
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8
خطوة 8.1
افترض أن . أوجِد .
خطوة 8.1.1
أوجِد مشتقة .
خطوة 8.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 8.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 8.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 8.1.5
أضف و.
خطوة 8.2
أعِد كتابة المسألة باستخدام و.
خطوة 9
تكامل بالنسبة إلى هو .
خطوة 10
بسّط.
خطوة 11
استبدِل كافة حالات حدوث بـ .
خطوة 12
الإجابة هي المشتق العكسي للدالة .