إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة دالة.
خطوة 2
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 3
عيّن التكامل لإيجاد الحل.
خطوة 4
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6
خطوة 6.1
افترض أن . أوجِد .
خطوة 6.1.1
أوجِد مشتقة .
خطوة 6.1.2
أوجِد المشتقة.
خطوة 6.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 6.1.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 6.1.3
احسِب قيمة .
خطوة 6.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 6.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 6.1.3.3
اضرب في .
خطوة 6.1.4
اطرح من .
خطوة 6.2
أعِد كتابة المسألة باستخدام و.
خطوة 7
خطوة 7.1
انقُل السالب أمام الكسر.
خطوة 7.2
اضرب في .
خطوة 7.3
انقُل إلى يسار .
خطوة 8
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 9
اضرب في .
خطوة 10
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 11
خطوة 11.1
اجمع و.
خطوة 11.2
احذِف العامل المشترك لـ و.
خطوة 11.2.1
أخرِج العامل من .
خطوة 11.2.2
ألغِ العوامل المشتركة.
خطوة 11.2.2.1
أخرِج العامل من .
خطوة 11.2.2.2
ألغِ العامل المشترك.
خطوة 11.2.2.3
أعِد كتابة العبارة.
خطوة 11.2.2.4
اقسِم على .
خطوة 12
تكامل بالنسبة إلى هو .
خطوة 13
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 14
تكامل بالنسبة إلى هو .
خطوة 15
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 16
خطوة 16.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 16.2
اضرب الأُسس في .
خطوة 16.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 16.2.2
اضرب في .
خطوة 17
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 18
خطوة 18.1
بسّط.
خطوة 18.2
بسّط.
خطوة 18.2.1
اضرب في .
خطوة 18.2.2
اجمع و.
خطوة 18.2.3
انقُل السالب أمام الكسر.
خطوة 19
استبدِل كافة حالات حدوث بـ .
خطوة 20
الإجابة هي المشتق العكسي للدالة .