إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
احسِب قيمة .
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
اضرب في .
خطوة 1.4
احسِب قيمة .
خطوة 1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4.3
اضرب في .
خطوة 1.5
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 1.5.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.5.2
أضف و.
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
اضرب في .
خطوة 2.3
احسِب قيمة .
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 2.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4.2
أضف و.
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
خطوة 4.1
أوجِد المشتق الأول.
خطوة 4.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.2
احسِب قيمة .
خطوة 4.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.3
اضرب في .
خطوة 4.1.3
احسِب قيمة .
خطوة 4.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.3.3
اضرب في .
خطوة 4.1.4
احسِب قيمة .
خطوة 4.1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.4.3
اضرب في .
خطوة 4.1.5
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 4.1.5.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.5.2
أضف و.
خطوة 4.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 5
خطوة 5.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 5.2
عوّض بـ في المعادلة. سيسهّل ذلك استخدام الصيغة التربيعية.
خطوة 5.3
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 5.4
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 5.5
بسّط.
خطوة 5.5.1
بسّط بَسْط الكسر.
خطوة 5.5.1.1
ارفع إلى القوة .
خطوة 5.5.1.2
اضرب .
خطوة 5.5.1.2.1
اضرب في .
خطوة 5.5.1.2.2
اضرب في .
خطوة 5.5.1.3
اطرح من .
خطوة 5.5.1.4
أعِد كتابة بالصيغة .
خطوة 5.5.1.4.1
أخرِج العامل من .
خطوة 5.5.1.4.2
أعِد كتابة بالصيغة .
خطوة 5.5.1.5
أخرِج الحدود من تحت الجذر.
خطوة 5.5.2
اضرب في .
خطوة 5.5.3
بسّط .
خطوة 5.6
بسّط العبارة لإيجاد قيمة الجزء من .
خطوة 5.6.1
بسّط بَسْط الكسر.
خطوة 5.6.1.1
ارفع إلى القوة .
خطوة 5.6.1.2
اضرب .
خطوة 5.6.1.2.1
اضرب في .
خطوة 5.6.1.2.2
اضرب في .
خطوة 5.6.1.3
اطرح من .
خطوة 5.6.1.4
أعِد كتابة بالصيغة .
خطوة 5.6.1.4.1
أخرِج العامل من .
خطوة 5.6.1.4.2
أعِد كتابة بالصيغة .
خطوة 5.6.1.5
أخرِج الحدود من تحت الجذر.
خطوة 5.6.2
اضرب في .
خطوة 5.6.3
بسّط .
خطوة 5.6.4
غيّر إلى .
خطوة 5.7
بسّط العبارة لإيجاد قيمة الجزء من .
خطوة 5.7.1
بسّط بَسْط الكسر.
خطوة 5.7.1.1
ارفع إلى القوة .
خطوة 5.7.1.2
اضرب .
خطوة 5.7.1.2.1
اضرب في .
خطوة 5.7.1.2.2
اضرب في .
خطوة 5.7.1.3
اطرح من .
خطوة 5.7.1.4
أعِد كتابة بالصيغة .
خطوة 5.7.1.4.1
أخرِج العامل من .
خطوة 5.7.1.4.2
أعِد كتابة بالصيغة .
خطوة 5.7.1.5
أخرِج الحدود من تحت الجذر.
خطوة 5.7.2
اضرب في .
خطوة 5.7.3
بسّط .
خطوة 5.7.4
غيّر إلى .
خطوة 5.8
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 5.9
عوّض بالقيمة الحقيقية لـ مرة أخرى في المعادلة المحلولة.
خطوة 5.10
أوجِد قيمة في المعادلة الأولى.
خطوة 5.11
أوجِد قيمة في المعادلة.
خطوة 5.11.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 5.11.2
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5.11.2.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 5.11.2.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 5.11.2.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5.12
أوجِد قيمة في المعادلة الثانية.
خطوة 5.13
أوجِد قيمة في المعادلة.
خطوة 5.13.1
احذِف الأقواس.
خطوة 5.13.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 5.13.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5.13.3.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 5.13.3.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 5.13.3.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5.14
حل هو .
خطوة 6
خطوة 6.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 7
النقاط الحرجة اللازم حساب قيمتها.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
خطوة 9.1
أعِد كتابة بالصيغة .
خطوة 9.2
ارفع إلى القوة .
خطوة 10
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
خطوة 11
خطوة 11.1
استبدِل المتغير بـ في العبارة.
خطوة 11.2
بسّط النتيجة.
خطوة 11.2.1
بسّط كل حد.
خطوة 11.2.1.1
أعِد كتابة بالصيغة .
خطوة 11.2.1.2
ارفع إلى القوة .
خطوة 11.2.1.3
أعِد كتابة بالصيغة .
خطوة 11.2.1.4
ارفع إلى القوة .
خطوة 11.2.2
الإجابة النهائية هي .
خطوة 12
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 13
خطوة 13.1
طبّق قاعدة الضرب على .
خطوة 13.2
ارفع إلى القوة .
خطوة 13.3
أعِد كتابة بالصيغة .
خطوة 13.4
ارفع إلى القوة .
خطوة 13.5
اضرب في .
خطوة 13.6
اضرب في .
خطوة 14
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
خطوة 15
خطوة 15.1
استبدِل المتغير بـ في العبارة.
خطوة 15.2
بسّط النتيجة.
خطوة 15.2.1
بسّط كل حد.
خطوة 15.2.1.1
طبّق قاعدة الضرب على .
خطوة 15.2.1.2
اضرب في بجمع الأُسس.
خطوة 15.2.1.2.1
انقُل .
خطوة 15.2.1.2.2
اضرب في .
خطوة 15.2.1.2.2.1
ارفع إلى القوة .
خطوة 15.2.1.2.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 15.2.1.2.3
أضف و.
خطوة 15.2.1.3
ارفع إلى القوة .
خطوة 15.2.1.4
اضرب في .
خطوة 15.2.1.5
أعِد كتابة بالصيغة .
خطوة 15.2.1.6
ارفع إلى القوة .
خطوة 15.2.1.7
طبّق قاعدة الضرب على .
خطوة 15.2.1.8
ارفع إلى القوة .
خطوة 15.2.1.9
أعِد كتابة بالصيغة .
خطوة 15.2.1.10
ارفع إلى القوة .
خطوة 15.2.1.11
اضرب في .
خطوة 15.2.1.12
اضرب في .
خطوة 15.2.2
الإجابة النهائية هي .
خطوة 16
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 17
خطوة 17.1
أعِد كتابة بالصيغة .
خطوة 17.2
ارفع إلى القوة .
خطوة 18
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
خطوة 19
خطوة 19.1
استبدِل المتغير بـ في العبارة.
خطوة 19.2
بسّط النتيجة.
خطوة 19.2.1
بسّط كل حد.
خطوة 19.2.1.1
أعِد كتابة بالصيغة .
خطوة 19.2.1.2
ارفع إلى القوة .
خطوة 19.2.1.3
أعِد كتابة بالصيغة .
خطوة 19.2.1.4
ارفع إلى القوة .
خطوة 19.2.2
الإجابة النهائية هي .
خطوة 20
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 21
خطوة 21.1
طبّق قاعدة الضرب على .
خطوة 21.2
ارفع إلى القوة .
خطوة 21.3
أعِد كتابة بالصيغة .
خطوة 21.4
ارفع إلى القوة .
خطوة 21.5
اضرب في .
خطوة 21.6
اضرب في .
خطوة 22
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
خطوة 23
خطوة 23.1
استبدِل المتغير بـ في العبارة.
خطوة 23.2
بسّط النتيجة.
خطوة 23.2.1
بسّط كل حد.
خطوة 23.2.1.1
طبّق قاعدة الضرب على .
خطوة 23.2.1.2
اضرب في بجمع الأُسس.
خطوة 23.2.1.2.1
انقُل .
خطوة 23.2.1.2.2
اضرب في .
خطوة 23.2.1.2.2.1
ارفع إلى القوة .
خطوة 23.2.1.2.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 23.2.1.2.3
أضف و.
خطوة 23.2.1.3
ارفع إلى القوة .
خطوة 23.2.1.4
اضرب في .
خطوة 23.2.1.5
أعِد كتابة بالصيغة .
خطوة 23.2.1.6
ارفع إلى القوة .
خطوة 23.2.1.7
طبّق قاعدة الضرب على .
خطوة 23.2.1.8
ارفع إلى القوة .
خطوة 23.2.1.9
أعِد كتابة بالصيغة .
خطوة 23.2.1.10
ارفع إلى القوة .
خطوة 23.2.1.11
اضرب في .
خطوة 23.2.1.12
اضرب في .
خطوة 23.2.2
الإجابة النهائية هي .
خطوة 24
هذه هي القيم القصوى المحلية لـ .
هي نقطة قصوى محلية
هي نقاط دنيا محلية
هي نقاط دنيا محلية
هي نقطة قصوى محلية
خطوة 25