حساب التفاضل والتكامل الأمثلة

قييم النهاية النهاية عند اقتراب x من 2 لـ (x^2+3x-10)/( الجذر التربيعي لـ 4x-4-x)
خطوة 1
طبّق قاعدة لوبيتال.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.2
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.1.2.3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.1.2.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.2.5
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.5.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.5.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.6
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.6.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.6.1.1
ارفع إلى القوة .
خطوة 1.1.2.6.1.2
اضرب في .
خطوة 1.1.2.6.1.3
اضرب في .
خطوة 1.1.2.6.2
أضف و.
خطوة 1.1.2.6.3
اطرح من .
خطوة 1.1.3
احسِب قيمة حد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.2
انقُل النهاية أسفل علامة الجذر.
خطوة 1.1.3.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.1.3.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.3.6
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.6.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.6.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.7
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.7.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.7.1.1
اضرب في .
خطوة 1.1.3.7.1.2
اضرب في .
خطوة 1.1.3.7.1.3
اطرح من .
خطوة 1.1.3.7.1.4
أعِد كتابة بالصيغة .
خطوة 1.1.3.7.1.5
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 1.1.3.7.2
اطرح من .
خطوة 1.1.3.7.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.3.8
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.4.3
اضرب في .
خطوة 1.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.6
أضف و.
خطوة 1.3.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.8
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.8.1
استخدِم لكتابة في صورة .
خطوة 1.3.8.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.8.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.8.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.8.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.8.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.8.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.8.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.8.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.8.7
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.3.8.8
اجمع و.
خطوة 1.3.8.9
اجمع البسوط على القاسم المشترك.
خطوة 1.3.8.10
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.8.10.1
اضرب في .
خطوة 1.3.8.10.2
اطرح من .
خطوة 1.3.8.11
انقُل السالب أمام الكسر.
خطوة 1.3.8.12
اضرب في .
خطوة 1.3.8.13
أضف و.
خطوة 1.3.8.14
اجمع و.
خطوة 1.3.8.15
اجمع و.
خطوة 1.3.8.16
انقُل إلى يسار .
خطوة 1.3.8.17
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.3.8.18
أخرِج العامل من .
خطوة 1.3.8.19
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.8.19.1
أخرِج العامل من .
خطوة 1.3.8.19.2
ألغِ العامل المشترك.
خطوة 1.3.8.19.3
أعِد كتابة العبارة.
خطوة 1.3.9
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.9.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.9.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.9.3
اضرب في .
خطوة 1.4
أعِد كتابة بالصيغة .
خطوة 1.5
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.5.2
اجمع و.
خطوة 1.5.3
اجمع البسوط على القاسم المشترك.
خطوة 2
بما أن الدالة تقترب بمقدار من جهة اليسار وبمقدار من جهة اليمين، إذن لا توجد نهاية.