إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.2.1
احسِب قيمة النهاية.
خطوة 1.2.1.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.2.1.2
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 1.2.1.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.2.1.4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.2.1.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.2.3
بسّط الإجابة.
خطوة 1.2.3.1
اضرب في .
خطوة 1.2.3.2
أضف و.
خطوة 1.2.3.3
القيمة الدقيقة لـ هي .
خطوة 1.2.3.4
اضرب في .
خطوة 1.3
احسِب قيمة حد القاسم.
خطوة 1.3.1
احسِب قيمة النهاية.
خطوة 1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.3.1.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.3.3
اطرح من .
خطوة 1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 3
خطوة 3.1
أوجِد مشتقة البسط والقاسم.
خطوة 3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.2
مشتق بالنسبة إلى يساوي .
خطوة 3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.4
احذِف الأقواس.
خطوة 3.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.6
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.8
اضرب في .
خطوة 3.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.10
أضف و.
خطوة 3.11
اضرب في .
خطوة 3.12
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.13
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.14
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.15
أضف و.
خطوة 4
خطوة 4.1
اقسِم على .
خطوة 4.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 4.3
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 4.4
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 4.5
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 4.6
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 5
احسِب قيمة حد بالتعويض عن بـ .
خطوة 6
خطوة 6.1
اضرب في .
خطوة 6.2
أضف و.
خطوة 6.3
القيمة الدقيقة لـ هي .
خطوة 6.4
اضرب في .