إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اقسِم باستخدام قسمة متعددات الحدود المطولة.
خطوة 1.1.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
+ | - | + | - | + |
خطوة 1.1.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | - | + | - | + |
خطوة 1.1.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | - | + | - | + | |||||||||
+ | + | - |
خطوة 1.1.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | - | + | - | + | |||||||||
- | - | + |
خطوة 1.1.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | - | + | - | + | |||||||||
- | - | + | |||||||||||
- | - |
خطوة 1.1.6
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
+ | - | + | - | + | |||||||||
- | - | + | |||||||||||
- | - | + |
خطوة 1.1.7
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | |||||||||||||
+ | - | + | - | + | |||||||||
- | - | + | |||||||||||
- | - | + |
خطوة 1.1.8
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | |||||||||||||
+ | - | + | - | + | |||||||||
- | - | + | |||||||||||
- | - | + | |||||||||||
- | - | + |
خطوة 1.1.9
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | |||||||||||||
+ | - | + | - | + | |||||||||
- | - | + | |||||||||||
- | - | + | |||||||||||
+ | + | - |
خطوة 1.1.10
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | |||||||||||||
+ | - | + | - | + | |||||||||
- | - | + | |||||||||||
- | - | + | |||||||||||
+ | + | - | |||||||||||
+ | + |
خطوة 1.1.11
الإجابة النهائية هي ناتج القسمة زائد الباقي على المقسوم عليه.
خطوة 1.2
فكّ الكسر واضرب في القاسم المشترك.
خطوة 1.2.1
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 1.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 1.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 1.2.2
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل في القاسم خطي، ضع متغيرًا واحدًا في مكانه .
خطوة 1.2.3
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل في القاسم خطي، ضع متغيرًا واحدًا في مكانه .
خطوة 1.2.4
اضرب كل كسر في المعادلة في قاسم العبارة الأصلية. في هذه الحالة، القاسم يساوي .
خطوة 1.2.5
ألغِ العامل المشترك لـ .
خطوة 1.2.5.1
ألغِ العامل المشترك.
خطوة 1.2.5.2
أعِد كتابة العبارة.
خطوة 1.2.6
ألغِ العامل المشترك لـ .
خطوة 1.2.6.1
ألغِ العامل المشترك.
خطوة 1.2.6.2
اقسِم على .
خطوة 1.2.7
بسّط كل حد.
خطوة 1.2.7.1
ألغِ العامل المشترك لـ .
خطوة 1.2.7.1.1
ألغِ العامل المشترك.
خطوة 1.2.7.1.2
اقسِم على .
خطوة 1.2.7.2
طبّق خاصية التوزيع.
خطوة 1.2.7.3
انقُل إلى يسار .
خطوة 1.2.7.4
ألغِ العامل المشترك لـ .
خطوة 1.2.7.4.1
ألغِ العامل المشترك.
خطوة 1.2.7.4.2
اقسِم على .
خطوة 1.2.7.5
طبّق خاصية التوزيع.
خطوة 1.2.7.6
انقُل إلى يسار .
خطوة 1.2.8
انقُل .
خطوة 1.3
أنشئ معادلات لمتغيرات الكسور الجزئية واستخدمها لتعيين سلسلة معادلات.
خطوة 1.3.1
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 1.3.2
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات الحدود التي لا تتضمن . ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 1.3.3
عيّن سلسلة المعادلات لإيجاد معاملات الكسور الجزئية.
خطوة 1.4
أوجِد حل سلسلة المعادلات.
خطوة 1.4.1
أوجِد قيمة في .
خطوة 1.4.1.1
أعِد كتابة المعادلة في صورة .
خطوة 1.4.1.2
اطرح من كلا المتعادلين.
خطوة 1.4.2
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 1.4.2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 1.4.2.2
بسّط الطرف الأيمن.
خطوة 1.4.2.2.1
بسّط .
خطوة 1.4.2.2.1.1
بسّط كل حد.
خطوة 1.4.2.2.1.1.1
طبّق خاصية التوزيع.
خطوة 1.4.2.2.1.1.2
اضرب في .
خطوة 1.4.2.2.1.1.3
اضرب في .
خطوة 1.4.2.2.1.2
اطرح من .
خطوة 1.4.3
أوجِد قيمة في .
خطوة 1.4.3.1
أعِد كتابة المعادلة في صورة .
خطوة 1.4.3.2
اطرح من كلا المتعادلين.
خطوة 1.4.3.3
اقسِم كل حد في على وبسّط.
خطوة 1.4.3.3.1
اقسِم كل حد في على .
خطوة 1.4.3.3.2
بسّط الطرف الأيسر.
خطوة 1.4.3.3.2.1
ألغِ العامل المشترك لـ .
خطوة 1.4.3.3.2.1.1
ألغِ العامل المشترك.
خطوة 1.4.3.3.2.1.2
اقسِم على .
خطوة 1.4.3.3.3
بسّط الطرف الأيمن.
خطوة 1.4.3.3.3.1
احذِف العامل المشترك لـ و.
خطوة 1.4.3.3.3.1.1
أخرِج العامل من .
خطوة 1.4.3.3.3.1.2
ألغِ العوامل المشتركة.
خطوة 1.4.3.3.3.1.2.1
أخرِج العامل من .
خطوة 1.4.3.3.3.1.2.2
ألغِ العامل المشترك.
خطوة 1.4.3.3.3.1.2.3
أعِد كتابة العبارة.
خطوة 1.4.4
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 1.4.4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 1.4.4.2
بسّط الطرف الأيمن.
خطوة 1.4.4.2.1
بسّط .
خطوة 1.4.4.2.1.1
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 1.4.4.2.1.2
اجمع البسوط على القاسم المشترك.
خطوة 1.4.4.2.1.3
اطرح من .
خطوة 1.4.5
اسرِد جميع الحلول.
خطوة 1.5
استبدِل كل معامل من معاملات الكسور الجزئية في بالقيم التي تم إيجادها لـ و.
خطوة 1.6
بسّط.
خطوة 1.6.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.6.2
اضرب في .
خطوة 1.6.3
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.6.4
اضرب في .
خطوة 2
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 5
طبّق قاعدة الثابت.
خطوة 6
اجمع و.
خطوة 7
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8
خطوة 8.1
افترض أن . أوجِد .
خطوة 8.1.1
أوجِد مشتقة .
خطوة 8.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 8.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 8.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 8.1.5
أضف و.
خطوة 8.2
أعِد كتابة المسألة باستخدام و.
خطوة 9
تكامل بالنسبة إلى هو .
خطوة 10
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 11
خطوة 11.1
افترض أن . أوجِد .
خطوة 11.1.1
أوجِد مشتقة .
خطوة 11.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 11.1.5
أضف و.
خطوة 11.2
أعِد كتابة المسألة باستخدام و.
خطوة 12
تكامل بالنسبة إلى هو .
خطوة 13
بسّط.
خطوة 14
خطوة 14.1
استبدِل كافة حالات حدوث بـ .
خطوة 14.2
استبدِل كافة حالات حدوث بـ .
خطوة 15
أعِد ترتيب الحدود.