إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
افترض أن . أوجِد .
خطوة 1.1.1
أوجِد مشتقة .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.3
أوجِد المشتقة.
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
اضرب في .
خطوة 1.1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.4
اضرب في .
خطوة 1.2
عوّض بالنهاية الدنيا عن في .
خطوة 1.3
بسّط.
خطوة 1.3.1
اضرب في .
خطوة 1.3.2
القيمة الدقيقة لـ هي .
خطوة 1.4
عوّض بالنهاية العليا عن في .
خطوة 1.5
بسّط.
خطوة 1.5.1
ألغِ العامل المشترك لـ .
خطوة 1.5.1.1
أخرِج العامل من .
خطوة 1.5.1.2
ألغِ العامل المشترك.
خطوة 1.5.1.3
أعِد كتابة العبارة.
خطوة 1.5.2
القيمة الدقيقة لـ هي .
خطوة 1.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 1.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 2
خطوة 2.1
انقُل السالب أمام الكسر.
خطوة 2.2
اضرب في .
خطوة 2.3
انقُل إلى يسار .
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5
خطوة 5.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 5.2
اضرب الأُسس في .
خطوة 5.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 5.2.2
اضرب في .
خطوة 6
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 7
خطوة 7.1
احسِب قيمة في وفي .
خطوة 7.2
بسّط.
خطوة 7.2.1
غيّر علامة الأُس بإعادة كتابة الأساس في صورة مقلوبه.
خطوة 7.2.2
اضرب في .
خطوة 7.2.3
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 7.2.4
أضف و.
خطوة 7.2.5
اضرب في .
خطوة 7.2.6
اضرب في .
خطوة 8
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: