حساب التفاضل والتكامل الأمثلة

قييم النهاية النهاية عند اقتراب x من 0 لـ ((1-4x)^2-1)/(-10x)
خطوة 1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2
طبّق قاعدة لوبيتال.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 2.1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.1.2
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 2.1.2.1.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.1.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.2.1.5
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.1.2.1.6
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1.1
اضرب في .
خطوة 2.1.2.3.1.2
أضف و.
خطوة 2.1.2.3.1.3
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 2.1.2.3.1.4
اضرب في .
خطوة 2.1.2.3.2
اطرح من .
خطوة 2.1.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 2.3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 2.3.2
أعِد كتابة بالصيغة .
خطوة 2.3.3
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1
طبّق خاصية التوزيع.
خطوة 2.3.3.2
طبّق خاصية التوزيع.
خطوة 2.3.3.3
طبّق خاصية التوزيع.
خطوة 2.3.4
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.1.1
اضرب في .
خطوة 2.3.4.1.2
اضرب في .
خطوة 2.3.4.1.3
اضرب في .
خطوة 2.3.4.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.3.4.1.5
اضرب في .
خطوة 2.3.4.1.6
اضرب في .
خطوة 2.3.4.2
اطرح من .
خطوة 2.3.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.7
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.7.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.7.3
اضرب في .
خطوة 2.3.8
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.8.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.8.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.8.3
اضرب في .
خطوة 2.3.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.10
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.10.1
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.10.1.1
اطرح من .
خطوة 2.3.10.1.2
أضف و.
خطوة 2.3.10.2
أعِد ترتيب الحدود.
خطوة 2.3.11
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
اقسِم على .
خطوة 3
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 4
احسِب قيمة حد بالتعويض عن بـ .
خطوة 5
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
انقُل السالب أمام الكسر.
خطوة 5.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
اضرب في .
خطوة 5.2.2
اضرب في .
خطوة 5.3
اطرح من .
خطوة 5.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 5.4.2
أخرِج العامل من .
خطوة 5.4.3
أخرِج العامل من .
خطوة 5.4.4
ألغِ العامل المشترك.
خطوة 5.4.5
أعِد كتابة العبارة.
خطوة 5.5
اجمع و.
خطوة 5.6
اضرب في .
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: