حساب التفاضل والتكامل الأمثلة

خطوة 1
اكتب في صورة دالة.
خطوة 2
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 3
عيّن التكامل لإيجاد الحل.
خطوة 4
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6
استخدِم قاعدة نصف الزاوية لإعادة كتابة بحيث تصبح .
خطوة 7
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
اجمع و.
خطوة 8.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
ألغِ العامل المشترك.
خطوة 8.2.2
أعِد كتابة العبارة.
خطوة 8.3
اضرب في .
خطوة 9
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 10
طبّق قاعدة الثابت.
خطوة 11
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 12
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 12.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1
أوجِد مشتقة .
خطوة 12.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 12.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 12.1.4
اضرب في .
خطوة 12.2
أعِد كتابة المسألة باستخدام و.
خطوة 13
اجمع و.
خطوة 14
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 15
تكامل بالنسبة إلى هو .
خطوة 16
طبّق قاعدة الثابت.
خطوة 17
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 17.1
أضف و.
خطوة 17.2
بسّط.
خطوة 18
استبدِل كافة حالات حدوث بـ .
خطوة 19
الإجابة هي المشتق العكسي للدالة .