حساب التفاضل والتكامل الأمثلة

أوجد عكس المشتق 2/( الجذر التربيعي لـ 2x-1)
خطوة 1
اكتب في صورة دالة.
خطوة 2
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 3
عيّن التكامل لإيجاد الحل.
خطوة 4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
أوجِد مشتقة .
خطوة 5.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.1.3.3
اضرب في .
خطوة 5.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.1.4.2
أضف و.
خطوة 5.2
أعِد كتابة المسألة باستخدام و.
خطوة 6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
اضرب في .
خطوة 6.2
انقُل إلى يسار .
خطوة 7
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 8.1.1
اجمع و.
خطوة 8.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 8.1.2.1
ألغِ العامل المشترك.
خطوة 8.1.2.2
أعِد كتابة العبارة.
خطوة 8.1.3
اضرب في .
خطوة 8.2
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
استخدِم لكتابة في صورة .
خطوة 8.2.2
انقُل خارج القاسم برفعها إلى القوة .
خطوة 8.2.3
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 8.2.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 8.2.3.2
اجمع و.
خطوة 8.2.3.3
انقُل السالب أمام الكسر.
خطوة 9
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 10
استبدِل كافة حالات حدوث بـ .
خطوة 11
الإجابة هي المشتق العكسي للدالة .