إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2
خطوة 2.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 2.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 2.1.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.3
احسِب قيمة حد القاسم.
خطوة 2.1.3.1
احسِب قيمة النهاية.
خطوة 2.1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.3.1.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.3.1.3
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 2.1.3.1.4
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.3.1.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.3.3
بسّط الإجابة.
خطوة 2.1.3.3.1
بسّط كل حد.
خطوة 2.1.3.3.1.1
أضف و.
خطوة 2.1.3.3.1.2
ارفع إلى القوة .
خطوة 2.1.3.3.1.3
اضرب في .
خطوة 2.1.3.3.2
اطرح من .
خطوة 2.1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 2.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 2.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
أعِد كتابة بالصيغة .
خطوة 2.3.4
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.3.4.1
طبّق خاصية التوزيع.
خطوة 2.3.4.2
طبّق خاصية التوزيع.
خطوة 2.3.4.3
طبّق خاصية التوزيع.
خطوة 2.3.5
بسّط ووحّد الحدود المتشابهة.
خطوة 2.3.5.1
بسّط كل حد.
خطوة 2.3.5.1.1
اضرب في .
خطوة 2.3.5.1.2
انقُل إلى يسار .
خطوة 2.3.5.1.3
اضرب في .
خطوة 2.3.5.2
أضف و.
خطوة 2.3.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.8
احسِب قيمة .
خطوة 2.3.8.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.8.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.8.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.8.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.8.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.8.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.8.7
اضرب في .
خطوة 2.3.8.8
أضف و.
خطوة 2.3.9
بسّط.
خطوة 2.3.9.1
طبّق خاصية التوزيع.
خطوة 2.3.9.2
جمّع الحدود.
خطوة 2.3.9.2.1
اضرب في .
خطوة 2.3.9.2.2
اضرب في .
خطوة 2.3.9.2.3
اطرح من .
خطوة 2.3.9.3
أعِد ترتيب الحدود.
خطوة 3
خطوة 3.1
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 3.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 3.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 4
احسِب قيمة حد بالتعويض عن بـ .
خطوة 5
خطوة 5.1
بسّط القاسم.
خطوة 5.1.1
اضرب في .
خطوة 5.1.2
اضرب في .
خطوة 5.1.3
اطرح من .
خطوة 5.2
ألغِ العامل المشترك لـ .
خطوة 5.2.1
أخرِج العامل من .
خطوة 5.2.2
أخرِج العامل من .
خطوة 5.2.3
ألغِ العامل المشترك.
خطوة 5.2.4
أعِد كتابة العبارة.
خطوة 5.3
انقُل السالب أمام الكسر.
خطوة 5.4
اضرب .
خطوة 5.4.1
اضرب في .
خطوة 5.4.2
اضرب في .
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: