إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.2.1
احسِب قيمة النهاية.
خطوة 1.2.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.2.1.2
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 1.2.1.3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.2.1.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.2.3
بسّط الإجابة.
خطوة 1.2.3.1
بسّط كل حد.
خطوة 1.2.3.1.1
اضرب في .
خطوة 1.2.3.1.2
القيمة الدقيقة لـ هي .
خطوة 1.2.3.1.3
اضرب في .
خطوة 1.2.3.2
اطرح من .
خطوة 1.3
احسِب قيمة حد القاسم.
خطوة 1.3.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.3.2
انقُل النهاية إلى الأُس.
خطوة 1.3.3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.3.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.3.5
بسّط الحدود.
خطوة 1.3.5.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.3.5.2
بسّط الإجابة.
خطوة 1.3.5.2.1
بسّط كل حد.
خطوة 1.3.5.2.1.1
أي شيء مرفوع إلى هو .
خطوة 1.3.5.2.1.2
اضرب في .
خطوة 1.3.5.2.2
اطرح من .
خطوة 1.3.5.2.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.3.5.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.3.6
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 3
خطوة 3.1
أوجِد مشتقة البسط والقاسم.
خطوة 3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3
احسِب قيمة .
خطوة 3.3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.1.2
مشتق بالنسبة إلى يساوي .
خطوة 3.3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.4
اضرب في .
خطوة 3.3.5
اضرب في .
خطوة 3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.5
أضف و.
خطوة 3.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.7
احسِب قيمة .
خطوة 3.7.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.7.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.7.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.7.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.7.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.7.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.7.4
اضرب في .
خطوة 3.7.5
انقُل إلى يسار .
خطوة 3.7.6
أعِد كتابة بالصيغة .
خطوة 3.8
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.9
أضف و.
خطوة 4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 5
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 6
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 7
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 8
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 9
انقُل النهاية إلى الأُس.
خطوة 10
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 11
خطوة 11.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 11.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 12
خطوة 12.1
بسّط بَسْط الكسر.
خطوة 12.1.1
اضرب في .
خطوة 12.1.2
القيمة الدقيقة لـ هي .
خطوة 12.2
أي شيء مرفوع إلى هو .
خطوة 12.3
اضرب في .
خطوة 12.4
اقسِم على .
خطوة 12.5
اضرب في .