إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 3
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.4
بسّط العبارة.
خطوة 3.4.1
أضف و.
خطوة 3.4.2
اضرب في .
خطوة 3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.6
اجمع الكسور.
خطوة 3.6.1
اضرب في .
خطوة 3.6.2
اضرب في .
خطوة 4
خطوة 4.1
طبّق خاصية التوزيع.
خطوة 4.2
بسّط بَسْط الكسر.
خطوة 4.2.1
اطرح من .
خطوة 4.2.2
اطرح من .
خطوة 4.2.3
اضرب في .
خطوة 4.3
احذِف العامل المشترك لـ و.
خطوة 4.3.1
أخرِج العامل من .
خطوة 4.3.2
ألغِ العوامل المشتركة.
خطوة 4.3.2.1
أخرِج العامل من .
خطوة 4.3.2.2
ألغِ العامل المشترك.
خطوة 4.3.2.3
أعِد كتابة العبارة.