إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة دالة.
خطوة 2
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 3
عيّن التكامل لإيجاد الحل.
خطوة 4
لنفترض أن ، حيث . إذن . لاحظ أنه نظرًا إلى أن ، إذن تُعد موجبة.
خطوة 5
خطوة 5.1
بسّط .
خطوة 5.1.1
طبّق متطابقة فيثاغورس.
خطوة 5.1.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 5.2
ألغِ العامل المشترك لـ .
خطوة 5.2.1
ألغِ العامل المشترك.
خطوة 5.2.2
أعِد كتابة العبارة.
خطوة 6
استخدِم قاعدة نصف الزاوية لإعادة كتابة بحيث تصبح .
خطوة 7
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 9
طبّق قاعدة الثابت.
خطوة 10
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 11
خطوة 11.1
افترض أن . أوجِد .
خطوة 11.1.1
أوجِد مشتقة .
خطوة 11.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.1.4
اضرب في .
خطوة 11.2
أعِد كتابة المسألة باستخدام و.
خطوة 12
اجمع و.
خطوة 13
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 14
تكامل بالنسبة إلى هو .
خطوة 15
بسّط.
خطوة 16
خطوة 16.1
استبدِل كافة حالات حدوث بـ .
خطوة 16.2
استبدِل كافة حالات حدوث بـ .
خطوة 16.3
استبدِل كافة حالات حدوث بـ .
خطوة 17
خطوة 17.1
اجمع و.
خطوة 17.2
طبّق خاصية التوزيع.
خطوة 17.3
اجمع و.
خطوة 17.4
اضرب .
خطوة 17.4.1
اضرب في .
خطوة 17.4.2
اضرب في .
خطوة 18
أعِد ترتيب الحدود.
خطوة 19
الإجابة هي المشتق العكسي للدالة .